
McMule
Release v0.5.1

The McMule Collaboration

Jan 03, 2024

Contents:

1 Getting started 3
1.1 Obtaining the code . 3
1.2 Simple runs at LO . 4
1.3 Running at NLO and beyond . 10
1.4 More complicated runs . 15

2 Structure of McMule 21
2.1 Modular structure of the code . 21
2.2 What happens when running . 23

3 General aspects of using McMule 25
3.1 Statistics . 25
3.2 Analysis . 26
3.3 Manual compilation . 27

4 Technical aspects of McMule 29
4.1 Phase-space generation . 29
4.2 Implementation of FKS schemes . 32
4.3 Calling procedures and function pointers . 34
4.4 Optional parameters for integrands . 34
4.5 Random number generation . 36
4.6 Differential distributions and intermediary state files . 37
4.7 Basics of containerisation . 38

5 Implementing new processes in McMule 41
5.1 Creating a new process group . 46
5.2 Study of 𝜉𝑐 dependence . 48
5.3 Example calculations in Mathematica . 48
5.4 Coding style and best practice . 50

6 The FKS2 scheme 51
6.1 FKSℓ: extension to NℓLO . 52

7 Glossary 53
7.1 Acronyms . 53
7.2 Technical terms . 54

8 Bibliography 57

9 Particle ID 59

10 Available processes and which_piece 63

i

11 Fortran reference guide 65
11.1 User-modifiable parameters . 65
11.2 Technical parameters . 67
11.3 User-facing functions . 67
11.4 The user file . 70
11.5 Technical routines . 72

12 pymule user guide 85
12.1 Working with files . 85
12.2 Working with errors . 87
12.3 Plotting . 92

13 pymule reference guide 97
13.1 Working with errors . 97
13.2 Working with abstract records . 103
13.3 Working with vegas records . 103
13.4 Working with records of data . 106
13.5 Working with 𝜉𝑐 data . 111
13.6 Working with plots . 113
13.7 Useful other functions . 117

14 Indices and tables 119

Bibliography 121

Python Module Index 123

Index 125

ii

McMule, Release v0.5.1

Yannick Ulrich 1, Pulak Banerjee 2, Antonio Coutinho 3, Tim Engel 4, Andrea Gurgone 56, Franziska
Hagelstein 78, Sophie Kollatzsch 89, Luca Naterop 89, Marco Rocco 8, Nicolas Schalch 1, Vladyslava
Sharkovska 89, Adrian Signer 89

1 Albert Einstein Center for Fundamental Physics, Universität Bern, CH-3012 Bern, Switzerland
2 Department of Physics, Indian Institute of Technology Guwahati, Guwahati-781039, Assam, India
3 IFIC, Universitat de València - CSIC, Parc Científic, Catedrático José Beltrán, 2, E-46980 Paterna, Spain
4 Albert-Ludwigs-Universität Freiburg, Physikalisches Institut, Hermann-Herder-Straße 3, D-79104 Freiburg, Germany
5 Dipartimento di Fisica, Università di Pavia, I-27100 Pavia, Italy
6 INFN, Sezione di Pavia, I-27100 Pavia, Italy
7 Institut für Kernphysik & PRISMA+ Cluster of Excellence, Johannes Gutenberg Universität Mainz, D-55099 Mainz, Germany
8 Paul Scherrer Institut, CH-5232 Villigen PSI, Switzerland
9 Physik-Institut, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland

Contents: 1

https://orcid.org/0000-0002-9947-3064
https://orcid.org/0000-0003-4897-4149
https://orcid.org/0000-0001-6298-8155
https://orcid.org/0000-0003-2794-9032
https://orcid.org/0000-0003-3700-4948
https://orcid.org/0000-0002-2017-7132
https://orcid.org/0000-0002-8560-1619
https://orcid.org/0000-0003-1586-1519
https://orcid.org/0000-0002-2561-1209
https://orcid.org/0000-0002-3798-8927
https://orcid.org/0000-0002-7282-5509
https://orcid.org/0000-0001-8488-7400

McMule, Release v0.5.1

2 Contents:

Chapter 1

Getting started

McMule is written in Fortran 95 with helper and analysis tools written in python. This guide will help you to get started
using McMule by describing in detail how to calculate the NLO corrections to 𝜏 → [𝜈𝜈]𝑒𝛾. Since the neutrinos are
not detected, we average over them, indicated by the brackets. Hence, we have to be fully inclusive w.r.t. the neutrinos.
Still, the code allows to make any cut on the other final-state particles. As we will see, the BR for this process, as
measured by BaBar [14, 18] has a discrepancy of more than 3𝜎 from the SM value. This will illustrate the importance
of fully differential NLO corrections in QED.

1.1 Obtaining the code

McMule is distributed multiple ways

• as a precompiled executable for recent-ish GNU Linux distributions. To be precise, your version of glibc needs
to be newer than 2.17. The currently supported versions of most popular distributions (CentOS, Debian, Ubuntu,
Fedora, RHEL) should be fine.

• as a Docker image that can be used on any platform.

• as the source code on Gitlab that can be compiled by the user. This contains the current release in the default
release branch as well as the developer preview (devel).

Here we will focus on the first method as it is by far the easiest. For developers and tinkerers, we refer to Section
Manual compilation on how to compile the code yourself.

First, obtain the McMule distribution from our website and extract the tarball

$ tar xzvf mcmule-release.tar.gz
mcmule-release/mcmule
mcmule-release/mcmule.mod

That’s it. You can, if you want, install McMule to use it from any directory with the following commands but this is
not required

$ cp mcmule-release/mcmule /usr/local/bin
$ cp mcmule-release/mcmule.mod /usr/local/include

To make use of McMule results, we also require the pymule python package It can be used from the tools/ folder of
the McMule repository but it is recommended that the user installs it

3

https://gitlab.com/mule-tools/mcmule
https://mule-tools.gitlab.io/download.html

McMule, Release v0.5.1

$ pip3 install git+https://gitlab.com/mule-tools/pymule.git

1.2 Simple runs at LO

1.2.1 Setting McMule up

In this example we want to compute two distributions, the invariant mass of the 𝑒𝛾 pair, 𝑚𝛾𝑒 ≡
√︀

(𝑝𝑒 + 𝑝𝛾)2, and
the energy of the electron, 𝐸𝑒, in the rest frame of the tau. To avoid an IR singularity in the BR, we have to require a
minimum energy of the photon. We choose this to be 𝐸𝛾 ≥ 10MeV as used in [14, 18].

At first, we need to find out how the process 𝜏 → 𝜈𝜈𝑒𝛾 is implemented in McMule. For this, we refer to the table in
Section Available processes and which_piece that specifies the pieces (sometimes called which_piece) that is required
for a generic processes. The generic process is a prototype for the physical process such as ℓ → 𝜈𝜈ℓ′𝛾 where the flavour
of the lepton ℓ is left open. In our case, we need to consider the row for 𝜇 → 𝜈𝜈𝑒𝛾. Since we are only interested in
LO, the only which_piece we need is m2enng0. To change from the generic process 𝜇 → 𝜈𝜈𝑒𝛾 to the process we are
actually interested in, 𝜏 → 𝜈𝜈𝑒𝛾, we pick the flavour tau-e which refers to a 𝜏 → 𝑒 · · · transition. Other options
would be tau-mu for 𝜏 → 𝜇 · · · ‘ or mu-e for 𝜇 → 𝑒 · · ·.

Next, we need to find out which particle ordering is used in McMule for this piece, i.e. which variable will contain eg.
the electron momentum. This is called the particle identification or PID. We can refer to the table in Section Particle
ID to find that for the which_piece m2enng0, we have

𝜇−(𝑝1) → 𝑒−(𝑝2)
[︀
𝜈𝑒𝜈𝜇](𝑝3, 𝑝4)𝛾(𝑝5)

We can now implement our observables. For this, we need to define a user.f95 file in the src folder. An empty
template can be found in the file tools/user-empty.f95. We can use this file to the measurement function we want to
calculate, i.e. which distributions and cuts we want to apply. We can further add some code that will execute at the
beginning of the Monte Carlo run (allowing us eg. to further configure our calculation) and for each event (to simulate
beam spread).

We begin by specifying the metadata of our histograms: we want two histograms (nr_q = 2) with 90 bins each
(nr_bins = 90). The ranges should be 0 < 𝑚𝛾𝑒 < 1800MeV and 0 ≤ 𝐸𝑒 ≤ 900MeV.

Listing 1.1: The metadata for our calculation with two histograms (nr_q
= 2) with 90 bins each (nr_bins = 90). The ranges should be 0 <
𝑚𝛾𝑒 < 1800MeV and 0 ≤ 𝐸𝑒 ≤ 900MeV.

12 real:: &
13 min_val(nrq) = (/ 0., 0. /)
14 real:: &
15 max_val(nrq) = (/ 1800., 900. /)
16 integer :: userdim = 0

Note: Finding suitable values for the ranges can be tricky beyond LO and usually requires a few test runs. Since all
histograms have the same number of bins, one is often forced to have empty bins to ensure ‘nice’ bin widths.

We can now define the actual measurement function called quant(). We need to

• calculate the invariant mass of the 𝑒𝛾 pair. This is done using the momentum-squaring function sq(). The result
is store in the first distribution, quant(1).

4 Chapter 1. Getting started

https://gitlab.com/mule-tools/mcmule/-/blob/master/tools/user-empty.f95

McMule, Release v0.5.1

• store the electron energy in quant(2). Since this is frame-dependent, we need to know that McMule generates
the particles in the tau rest frame. However, in general it is better to boost into that frame. Further, McMule
stores momenta as (/px,py,pz,E/), meaning the energy is q2(4).

• cut on the photon energy q5(4). The variable pass_cut controls the cuts. Initially it is set to .true., to indicate
that the event is kept. Applying a cut amounts to setting pass_cut to .false..

Listing 1.2: The measurement function at LO

62 FUNCTION QUANT(q1,q2,q3,q4,q5,q6,q7)
63

64 real (kind=prec), intent(in) :: q1(4),q2(4),q3(4),q4(4), q5(4),q6(4),q7(4)
65 real (kind=prec) :: quant(nr_q)
66 !! ==== keep the line below in any case ==== !!
67 call fix_mu
68

69 pass_cut = .true.
70 if(q5(4) < 10._prec) pass_cut = .false.
71

72 names(1) = 'minv'
73 quant(1) = sqrt(sq(q2+q5))
74

75 names(2) = 'Ee'
76 quant(2) = q2(4)
77

78 END FUNCTION QUANT

Additionally to the numeric value in quant(i) we store a human-readable name in names(i).

Warning: The maximal length of these names is defined in the variable namesLen which defaults to 6 characters.

Also note that this measurement function is not IR-safe!

We now need to compile our observable into a shared library so that McMule can load it. To do this, we run

$ gfortran -fPIC --shared -o user.so user.f95

This requires the mcmule.mod file to either be in the current directory or installed somewhere the compiler can find it.
Otherwise, one needs to add the corresponding flag

$ gfortran -I/path/to/the/folder/of/mcmule.mod/ -fPIC --shared -o user.so user.f95

We now need to re-compile McMule to ensure that we have the correct version of user.f95.

Warning: The mcmule.mod header file is autogenerated by GFortran during the compilation of McMule. If you
are using a copy of GFortran prior to version 8, this means you will have to regenerate the header file manually. To
do this, you can use the build-header.sh script.

1.2. Simple runs at LO 5

McMule, Release v0.5.1

1.2.2 Running McMule manually

Now the mule is ready to trot. For quick and dirty runs of McMule, the easiest way is to just execute the mcmule binary
in the same directory as the user.so file and input the configuration by hand. However, since this is not how the code
is meant to be used, it will not prompt the user but just expect the correct input.

We now need to choose the statistics we want. For this example, we pick 10 iterations with 1000× 103 points each for
pre-conditioning and 50 iterations with 1000×103 points each for the actual numerical evaluation (cf. Section Statistics
for some heuristics to determine the statistics needed). We pick a random seed between 0 and 231 − 1 (cf. Section
Random number generation), say 70998, and for the input variable which_piece we enter m2enng0 as discussed
above. The flavour variable is now set to tau-e to change from the generic process 𝜇 → 𝜈𝜈𝑒𝛾 to the process we are
actually interested in, 𝜏 → 𝜈𝜈𝑒𝛾. This system is used for other processes as well. The input variable which_piece
determines the generic process and the part of it that is to be computed (i.e. tree level, real, double virtual etc.). In a
second step, the input flavour associates actual numbers to the parameters entering the matrix elements and phase-
space generation. This means that we need to input the following (the specifications for the input can be found in Table
1.1):

Warning: When running mcmule outside the normal repository, you need to make sure that an out/ folder exists.

$ gfortran -fPIC --shared -o user.so user.f95
$./mcmule
1000
10
10000
50
70998
1.0
1.0
m2enng0
tau-e

* C O L L I E R *
* *
* Complex One-Loop Library *
* In Extended Regularizations *
* *
* by A.Denner, S.Dittmaier, L.Hofer *
* *
* version 1.2.3 *
* *

- * - * - * - * - * - * - * -
Version information

Full SHA: 3342511
Git SHA: 1fbc291
Git branch: HEAD
- * - * - * - * - * - * - * -

Calculating tau->e nu nu gamma at LO
- * - * - * - * - * - * - * -

(continues on next page)

6 Chapter 1. Getting started

McMule, Release v0.5.1

(continued from previous page)

internal avgi, sd: 31902651645147.434 3242845143300.6875
internal avgi, sd: 36962119569527.797 1491060763146.8340
internal avgi, sd: 39908483081760.562 701506532475.22485
internal avgi, sd: 41908326436302.352 183707731215.21738
internal avgi, sd: 41771416194096.336 55441877946.459091
internal avgi, sd: 41871492562379.680 27645368422.638184
internal avgi, sd: 41870973597620.547 21172712863.774796
internal avgi, sd: 41881968277900.094 17287639806.820400
internal avgi, sd: 41894819976244.469 15148087824.181145
internal avgi, sd: 41892443511666.180 13860145189.905710
internal avgi, sd: 41883909931737.320 9081654737.2369480
internal avgi, sd: 41891877400107.203 5996399688.5281315
internal avgi, sd: 41887401454137.172 4967120009.5028763
internal avgi, sd: 41894988589984.109 4318086453.2893734
internal avgi, sd: 41895218930734.938 3855189670.2831044
internal avgi, sd: 41893628691682.039 3569029881.5161963
internal avgi, sd: 41895702521658.094 3301046354.0162683
internal avgi, sd: 41894921420510.164 3068605199.3146548
internal avgi, sd: 41894380982483.836 2884341089.4262500
internal avgi, sd: 41894136940077.953 2719744511.4164872
internal avgi, sd: 41894755045877.328 2575585554.2240872
internal avgi, sd: 41894180414331.000 2448105950.1048141
internal avgi, sd: 41892974586371.242 2335940686.3421283
internal avgi, sd: 41892018243977.422 2237743190.2910728
internal avgi, sd: 41892128399199.852 2151548541.7080536
internal avgi, sd: 41891054946079.172 2079987935.2725692
internal avgi, sd: 41890529496649.336 2009220806.5744867
internal avgi, sd: 41889627128683.867 1952022430.9618585
internal avgi, sd: 41889091169697.750 1901209181.0766854
internal avgi, sd: 41889491086513.711 1851335964.4142988
internal avgi, sd: 41889024177143.492 1804584253.3775585
internal avgi, sd: 41888652800094.414 1763879105.2402925
internal avgi, sd: 41888186242209.695 1734933321.8742726
internal avgi, sd: 41888838662647.031 1702558920.3787835
internal avgi, sd: 41888878166048.805 1664687915.8245957
internal avgi, sd: 41888871786161.102 1628412032.4284451
internal avgi, sd: 41888673286317.961 1598222188.0324447
internal avgi, sd: 41888363240043.000 1570566301.1038322
internal avgi, sd: 41888533287695.047 1541834130.0455377
internal avgi, sd: 41888087919550.688 1514438031.2038479
internal avgi, sd: 41887838382975.297 1487390337.2575607
internal avgi, sd: 41887692329889.953 1465777595.5131192
internal avgi, sd: 41887528786746.531 1450928637.2665195
internal avgi, sd: 41887814931451.086 1432276674.4390638
internal avgi, sd: 41887764015763.508 1409275835.0397925
internal avgi, sd: 41887871329949.469 1388512123.7455208
internal avgi, sd: 41887728279057.234 1369450030.9152539
internal avgi, sd: 41887673022843.117 1350554230.4978600
internal avgi, sd: 41887824787223.562 1332418851.3856776
internal avgi, sd: 41887720562604.266 1315515744.3643637
internal avgi, sd: 41887747627717.641 1297906527.3172038

(continues on next page)

1.2. Simple runs at LO 7

McMule, Release v0.5.1

(continued from previous page)

internal avgi, sd: 41887385610296.359 1280408319.1259799
internal avgi, sd: 41887163475026.672 1262887224.9655898
internal avgi, sd: 41887020587065.422 1248392301.3985555
internal avgi, sd: 41886965905979.375 1236043197.7830524
internal avgi, sd: 41887132288349.984 1225259563.1290646
internal avgi, sd: 41887118281531.000 1211732414.0191844
internal avgi, sd: 41887256099447.883 1199948076.9753296
internal avgi, sd: 41887425753145.656 1188759649.9116085
internal avgi, sd: 41887079359692.539 1176252324.5589268
points: 10* 1M + 50* 10M random seed: 70998
part: m2enng0 xicut: 1.00000 delcut: 1.00000
points on phase space 321225751 thereof fucked up 0

result, error: { 4.18871E+13, 1.17625E+09 }; chisq: 1.27

- * - * - * - * - * - * - * -

McMule begins by printing some auto-versioning information (the SHA1 hashes of the source code and the git version)
as well as some user-defined information from the subroutine inituser(). Next, the integration begins. After every
iteration, McMule prints the current best estimate and error of the total cross section or decay rate. Before exiting,
it will also print again the input used as well as the number of points evaluated and the final result. This run took
approximately 15 minutes.

Table 1.1: The options read from stdin by McMule. The calls are mul-
tiplied by 1000.

Variable name Data type Comment
nenter_ad integer calls / iteration during pre-conditioning
itmx_ad integer iterations during pre-conditioning
nenter integer calls / iteration during main run
itmx integer iterations during main run
ran_seed integer random seed 𝑧1
xinormcut real(prec) the 0 < 𝜉𝑐 ≤ 1 parameter
delcut real(prec) the 𝛿cut parameter (or at NNLO the second 𝜉𝑐)
which_piece char(10) the part of the calculation to perform
flavour char(8) the particles involved
(opt) unknown the user can request further input during inituser()

1.2.3 Analysing the output

After running McMule we want to calculate the actual cross section or decay rate and make plots. The McMule output
is saved to the out/ folder as a .vegas file that contains the entire state of the integrator (cf. Section Differential
distributions and intermediary state files). We can open this file in python and make plots.

While it is possible to open just a single file using importvegas(), this is rarely done as real-world calculations can
involve hundreds of .vegas files. Instead, we move the .vegas file into a new directory, say example1 and then use
sigma() and mergefks().

8 Chapter 1. Getting started

McMule, Release v0.5.1

1 from pymule import *
2

3 lifetime = 1/(1000*(6.582119e-25)/(2.903e-13))
4 # define vegas directory
5 setup(folder="example1/")
6 dat = scaleset(
7 mergefks(sigma("m2enng0")),
8 GF**2*alpha*lifetime
9)

10

11 dat.keys()
12 # dict_keys(['time', 'chi2a', 'value', 'Ee', 'minv'])

Warning: In McMule the numerical value of the Fermi constant 𝐺𝐹 and the fine-structure constant 𝛼 are set to
one for predominately historical reasons. This needs to be restored in python, eg. using scaleset()

The variable dat now contains the runtime (time), branching ratio (after multiplication with the lifetime, value), and
𝜒2 of the integration (chi2a) as well as our distributions (Ee and minv). Numerical values such as cross sections or
branching ratios are stored as numpy arrays with errors as np.array([y, dy]). Distributions are stored as numpy
𝑁 × 3 matrices

np.array([[x1, y1, dy1],
[x2, y2, dy2],
[x3, y3, dy3],
[x4, y4, dy4],
[x5, y5, dy5],
...
[xn, yn, dyn]])

These can be manipulated eg. using the tools of pymule described in Section pymule user guide. For now, we will just
make a plot of the 𝐸𝑒 distribution Ee

14 from matplotlib.pyplot import *
15 fig = plt.figure()
16 errorband(dat['Ee'])
17 plt.ylabel(r'$\D\mathcal{B}/\D E_e$')
18 plt.xlabel(r'$E_e\,/\,{\rm MeV}$')
19 mulify(fig)
20 fig.savefig("dummy.svg")

Figure 1.1: Result of the LO test run for the 𝐸𝑒 distribution

1.2. Simple runs at LO 9

McMule, Release v0.5.1

1.3 Running at NLO and beyond

A few things change once we go beyond LO since we can have extra radiation. To account for this, more which_piece
need to be ran and then correctly combined. This also increases the number of runs necessary, meaning that the manual
approach from above is no longer feasible.

1.3.1 Setting McMule up

Referring back to Section Available processes and which_piece we find that we need the pieces m2enngF and m2enngR
for virtual and real corrections respectively. The PID table of Section Particle ID tells us that the real photon can is
going to be q6.

We first need to decide whether we want to calculate exclusive or inclusive decays. The details here depend on the
exact experimental situation which can be tricky to properly implement. Following the BaBar analysis [14, 18] we will
consider the exclusive radiative decay, i.e. we request precisely one photon with energy 𝐸𝛾 > 10MeV. The function
quant() will have to take this into account with the additional argument q6, the momentum of the second photon.

To ensure IR safety, we define the harder and softer photon gh and gs, respectively, and require that the former (latter)
has energy larger (smaller) than 10MeV. This new version of quant() is also suitable for the LO calculation and it is
generally advisable to use a single quant() function for all parts of a computation.

Listing 1.3: The measurement function beyond LO. The changes w.r.t. to
LO are highlighted.

62 FUNCTION QUANT(q1,q2,q3,q4,q5,q6,q7)
63

64 real (kind=prec), intent(in) :: q1(4),q2(4),q3(4),q4(4), q5(4),q6(4),q7(4)
65 real (kind=prec) :: quant(nr_q)
66 real (kind=prec) :: gs(4), gh(4)
67 !! ==== keep the line below in any case ==== !!
68 call fix_mu
69

70 if (q5(4) > q6(4)) then
71 gh = q5 ; gs = q6
72 else
73 gh = q6 ; gs = q5
74 endif
75

76 if (gh(4) < 10.) pass_cut = .false.
77 if (gs(4) > 10.) pass_cut = .false.
78

79 names(1) = 'minv'
80 quant(1) = sqrt(sq(q2+qh))
81

82 names(2) = 'Ee'
83 quant(2) = q2(4)
84

85 END FUNCTION QUANT

10 Chapter 1. Getting started

McMule, Release v0.5.1

1.3.2 Running McMule

The FKS scheme used in McMule introduces an unphysical parameter called 𝜉𝑐 that can be varied between

0 < 𝜉𝑐 ≤ 𝜉max = 1−
(︀∑︀

𝑖 𝑚𝑖

)︀2
𝑠

Checking the independence of physical results on the latter serves as a consistency check, both of the implementation
of McMule but also of the IR safety of the measurement function. To do this, it can help to disentangle m2enngF into
m2enngV and m2enngC though this is not necessary. Only the latter depends on 𝜉𝑐 and this part is typically much faster
in the numerical evaluation.

A particularly convenient way to run McMule is using menu files1. A menu file contains a list of jobs to be computed
s.t. the user will only have to vary the random seed and 𝜉𝑐 by hand as the statistical requirements are defined globally
in a config file. This is completed by a submission script, usually called submit.sh. The submit script is what will
need to be launched which in turn will take care of the starting of different jobs. It can be run on a normal computer or
on a SLURM cluster [27]. To prepare the run in this way we can use pymule

Listing 1.4: The steps necessary to use pymule to prepare running Mc-
Mule. Note that numbers listed as seeds are random and hence not repro-
ducible.

$ pymule create -i
What generic process? [m2enn] m2enng
Which flavour combination? [mu-e] tau-e
How many / which seeds? [5]
Which xi cuts? [[0.5, 0.25, 0.125]]
Where to store data? [m2enngtau-e] example2
Which pieces? [['0', 'V', 'R']] 0, V, C, R
How much statistics for 0 (pc, pi, c, i)? [(10000, 20, 100000, 100)] 1000,10,1000,50
How much statistics for V (pc, pi, c, i)? [(10000, 20, 100000, 100)] 1000,10,1000,50
How much statistics for C (pc, pi, c, i)? [(10000, 20, 100000, 100)] 1000,10,1000,50
How much statistics for R (pc, pi, c, i)? [(10000, 20, 100000, 100)] 5000,50,10000,100
Building files. To rerun this, execute
pymule create\

--seeds 70998 66707 69184 75845 63937 \
-xi 0.5 0.25 0.125 \
--flavour tau-e \
--genprocess m2enng \
--output-dir babar-tau-e \
--prog mcmule \
--stat R,5000,50,10000,100 \
--stat 0,1000,10,1000,50 \
--stat V,1000,10,1000,50 \
--stat C,1000,10,1000,50

Expect 3750 iterations, 20.250000G calls
Created menu, config and submit script in example2
Please change the ntasks and time options accordingly

When using the tool, we are asked various questions, most of which have a default answer in square brackets. In the
end pymule will create a directory that the user decided to call example2, where all results will be stored. The menu
and config files generated by pymule are shown in Listing 1.5 and Listing 1.6

1 The name menu was originally used by the cryptanalysts at Bletchley Park to describe a particular set of configurations for the ‘computer’ to
try

1.3. Running at NLO and beyond 11

McMule, Release v0.5.1

Listing 1.5: menu file for the present calculation

Generated at 16:00 on February 28 2020 by yannickulrich
git version: redesign (b558978)

conf example2/m2enng-tau-e.conf

run 19397 1.000000 m2enng0 tau-e 0
run 52088 1.000000 m2enng0 tau-e 0
run 83215 1.000000 m2enng0 tau-e 0
run 93857 1.000000 m2enng0 tau-e 0
run 86361 1.000000 m2enng0 tau-e 0

run 19397 1.000000 m2enngV tau-e 0
run 52088 1.000000 m2enngV tau-e 0
run 83215 1.000000 m2enngV tau-e 0
run 93857 1.000000 m2enngV tau-e 0
run 86361 1.000000 m2enngV tau-e 0

run 19397 0.500000 m2enngC tau-e 0
run 52088 0.500000 m2enngC tau-e 0
run 83215 0.500000 m2enngC tau-e 0
run 93857 0.500000 m2enngC tau-e 0
run 86361 0.500000 m2enngC tau-e 0
run 19397 0.500000 m2enngR tau-e 0
run 52088 0.500000 m2enngR tau-e 0
run 83215 0.500000 m2enngR tau-e 0
run 93857 0.500000 m2enngR tau-e 0
run 86361 0.500000 m2enngR tau-e 0

run 19397 0.250000 m2enngC tau-e 0
run 52088 0.250000 m2enngC tau-e 0
run 83215 0.250000 m2enngC tau-e 0
run 93857 0.250000 m2enngC tau-e 0
run 86361 0.250000 m2enngC tau-e 0
run 19397 0.250000 m2enngR tau-e 0
run 52088 0.250000 m2enngR tau-e 0
run 83215 0.250000 m2enngR tau-e 0
run 93857 0.250000 m2enngR tau-e 0
run 86361 0.250000 m2enngR tau-e 0

run 19397 0.125000 m2enngC tau-e 0
run 52088 0.125000 m2enngC tau-e 0
run 83215 0.125000 m2enngC tau-e 0
run 93857 0.125000 m2enngC tau-e 0
run 86361 0.125000 m2enngC tau-e 0
run 19397 0.125000 m2enngR tau-e 0
run 52088 0.125000 m2enngR tau-e 0
run 83215 0.125000 m2enngR tau-e 0
run 93857 0.125000 m2enngR tau-e 0
run 86361 0.125000 m2enngR tau-e 0

12 Chapter 1. Getting started

McMule, Release v0.5.1

Listing 1.6: Configuration file for the present calculation

Generated at 16:00 on February 28 2020 by yannickulrich
git version: redesign (b558978)

specify the program to run relative to `pwd`
binary=mcmule

specify the output folder
folder=example2/

Specify the variables nenter_ad, itmx_ad, nenter and itmx
for each piece you want to run.
declare -A STAT=(
["m2enng0"]="1000\n10\n1000\n50"
["m2enngC"]="1000\n10\n1000\n50"
["m2enngR"]="5000\n50\n10000\n100"
["m2enngV"]="1000\n10\n1000\n50"

)

To start mcmule, we now just need to execute the created example2/submit.sh after copying the user library user.
so into the same folder. Note that per default this will spawn at most as many jobs as the computer pymule ran on had
CPU cores. If the user wishes a different number of parallel jobs, change the fifth line of example2/submit.sh to

#SBATCH --ntasks=<number of cores>

To now run McMule, just execute

$ nohup ./example2/submit.sh &

The nohup is not technically necessary but advisable, especially on remote systems. When running on a SLURM
system, the other SLURM parameters --partition, --time, and --clusters need to be adapted as well.

Warning: The submission script will call itself on multiple occasions. Therefore, it is not advisable to change its
name or the name of the run directory without taking precautions.

1.3.3 Analysing the results

After running the code, we need to combine the various which_piece into physical results that we will want to use to
create plots. This is the moment where pymule’s mergefks() shines.

Listing 1.7: An example code to analyse the results for 𝜏 → 𝜈𝜈𝑒𝛾 in
pymule. Note that, in the Fortran code 𝐺𝐹 = 𝛼 = 1. In pymule they are
at their physical values.

from pymule import *

To normalise branching ratios, we need the tau lifetime
lifetime = 1/(1000*(6.582119e-25)/(2.903e-13))

The folder where McMule has stored the statefiles
(continues on next page)

1.3. Running at NLO and beyond 13

McMule, Release v0.5.1

(continued from previous page)

setup(folder='example2/out.tar.bz2')

Import LO data and re-scale to branching ratio
LO = scaleset(mergefks(sigma('m2enng0')), GF**2*lifetime*alpha)

Import NLO corrections from the three pieces
NLO = scaleset(mergefks(

sigma('m2enngR'), # real corrections
sigma('m2enngC'), # counter term
anyxi=sigma('m2enngV') # virtual corrections

), GF**2*lifetime*alpha**2)

The branching ratio at NLO = LO + correction
fullNLO = plusnumbers(LO['value'], NLO['value'])

Print results
print("BR_0 = ", printnumber(LO['value']))
print("dBR = ", printnumber(NLO['value']))

Produce energy plot
fig1, (ax1, ax2) = kplot(

{'lo': LO['Ee'], 'nlo': NLO['Ee']},
labelx=r"$E_e\,/\,{\rm MeV}$",
labelsigma=r"$\D\mathcal{B}/\D E_e$"

)
ax2.set_ylim(-0.2,0.01)

Produce visible mass plot
fig2, (ax1, ax2) = kplot(

{'lo': LO['minv'], 'nlo': NLO['minv']},
labelx=r"$m_{e\gamma}\,/\,{\rm MeV}$",
labelsigma=r"$\D\mathcal{B}/\D m_{e\gamma}$"

)
ax1.set_yscale('log')
ax1.set_xlim(1000,0) ; ax1.set_ylim(5e-9,1e-3)
ax2.set_ylim(-0.2,0.)

Once pymule is imported and setup, we import the LO and NLO which_piece and combine them using two central
pymule commands that we have encountered above: sigma() and mergefks(). sigma() takes the which_piece as
an argument and imports matching results, already merging different random seeds. pymule`mergefks() takes the
results of (multiple) sigma() invocations, adds results with matching 𝜉𝑐 values and combines the result. In the present
case, 𝜎(1)

𝑛 is split into multiple contributions, namely m2enngV and m2enngC. This is indicated by the anyxi argument.

Next, we can use some of pymule’s tools (cf. Listing Listing 1.7) to calculate the full NLO BRs from the corrections
and the LO results

ℬ|LO = 1.8339(1)× 10−2

ℬ|NLO = 1.6451(1)× 10−2

which agree with [10, 21], but ℬ|NLO is in tension with the value ℬ|exp = 1.847(54) × 10−2 reported by BaBar [14,
18]. As discussed in [21, 24] it is very likely that this tension would be removed if a full NLO result was used to take
into account the effects of the stringent experimental cuts to extract the signal. This issue has been explained in detail
in [21, 24, 25].

14 Chapter 1. Getting started

McMule, Release v0.5.1

As a last step, we can use the matplotlib-backed kplot() command to present the results for the distributions
(logarithmic for 𝑚𝑒𝛾 and linear for 𝐸𝑒). The upper panel of Figure 1.2 shows the results for the invariant mass 𝑚𝑒𝛾

at LO (green) and NLO (blue) in the range 0 ≤ 𝑚𝑒𝛾 ≤ 1GeV. Note that this, for the purposes of the demonstration,
does not correspond to the boundaries given in the run.

Figure 1.2: Results of the toy run to compute 𝑚𝑒𝛾 for 𝜏 → 𝜈𝜈𝑒𝛾. Upper panels show the LO (green) and NLO (blue)
results, the lower panels show the NLO K factor.

The distribution falls sharply for large 𝑚𝑒𝛾 . Consequently, there are only few events generated in the tail and the
statistical error becomes large. This can be seen clearly in the lower panel, where the NLO 𝐾 factor is shown. It is
defined as

𝐾(1) = 1 +
d𝜎(1)

d𝜎(0)

and the band represents the statistical error of the Monte Carlo integration. To obtain a reliable prediction for larger
values of𝑚𝑒𝛾 , i.e. the tail of the distribution, we would have to perform tailored runs. To this end, we should introduce a
cut 𝑚cut ≪ 𝑚𝜏 on 𝑚𝑒𝛾 to eliminate events with larger invariant mass. Due to the adaption in the numerical integration,
we then obtain reliable and precise results for values of 𝑚𝑒𝛾 ≲ 𝑚cut.

Figure 1.3 shows the electron energy distribution, again at LO (green) and NLO (blue). As for 𝑚𝑒𝛾 the corrections are
negative and amount to roughly 10%. Since this plot is linear, they can be clearly seen by comparing LO and NLO. In
the lower panel once more the 𝐾 factor is depicted. Unsurprisingly, at the very end of the distribution, 𝐸𝑒 ∼ 900MeV,
the statistics is out of control.

Figure 1.3: Results of the toy run to compute 𝐸𝑒 for 𝜏 → 𝜈𝜈𝑒𝛾. Upper panels show the LO (green) and NLO (blue)
results, the lower panels show the NLO K factor.

1.4 More complicated runs

To demonstrate some of McMule capabilities, we tweak the observable a bit. Since the tau is usually produced in
𝑒+𝑒− → 𝜏+𝜏−, we instead use the LO cross section

d𝜎

d(cos 𝜃)
∝
(︁
1 +

4𝑚2
𝜏

𝑠

)︁
+
(︁
1 +

4𝑚2
𝜏

𝑠

)︁
cos 𝜃 (1.1)

with
√
𝑠 = 𝑚ϒ(4𝑆) = 10.58GeV.

To accurately simulate this situation, we need to

• choose a random value for 𝜃,

• construct the tau momentum 𝑝1 in the lab frame,

• boost the momenta from McMule into this frame, and

• apply a correction weight from (1.1)

for every event. We require the following cuts in the lab frame

• the produced electron and hard photon have −0.75 ≤ cos 𝜃𝑖,𝑒− ≤ +0.95

• the hard photon energy is bigger than 220 MeV

Further, we want to have a switch for inclusive and exclusive measurements without having to adapt the user file.

1.4. More complicated runs 15

McMule, Release v0.5.1

1.4.1 Asking for user input

To be able to switch cuts on and off, we need to read input from the user at runtime. This can be done in the inituser()
routine where input can be read. We can store the result in a global variable (exclusiveQ) so we can later use it in
quant(). Further, we need modify the name of the vegas file by changing filenamesuffix. It is also good practice
to print the configuration chosen for documentation purposes.

57 SUBROUTINE INITUSER
58 read*, exclusiveQ
59

60 if(exclusiveQ == 1) then
61 print*, "Calculating tau->e nu nu gamma in ee->tau tau exclusive"
62 filenamesuffix = "e"
63 else
64 print*, "Calculating tau->e nu nu gamma in ee->tau tau inclusive"
65 filenamesuffix = "i"
66 endif
67

68 ! Let the tau be unpolarised
69 pol1 = (/ 0._prec, 0._prec, 0._prec, 0._prec /)
70 END SUBROUTINE

Note: When using the menu file system, this can only be a single integer. To read multiple bits of information, you
need to encode the data somehow.

1.4.2 Generation of the tau momentum

We can use the user integration feature of McMule to generate cos 𝜃. This allows us to write

𝜎 ∼
∫︁ 1

0

d𝑥1

∫︁ 1

0

d𝑥2 · · ·
∫︁ 1

0

d𝑥𝑚 ×
∫︁

dΦ |ℳ𝑛|2 𝑓(𝑥1, 𝑥2, · · · , 𝑥𝑛; 𝑝1, · · · , 𝑝𝑛)

with a generalised measurement function 𝑓 . Since (1.1) is sufficiently simple, we will sample cos 𝜃 with a uniform
distribution and apply a correction weight rather trying to sample it directly. We set the variable userdim to one to
indicate that we want to carry out 𝑚 = 1 extra integrations and define the function userevent() that sets global
variable cth for cos 𝜃

133 SUBROUTINE USEREVENT(X, NDIM)
134 integer :: ndim
135 real(kind=prec) :: x(ndim)
136

137 cth = 2*x(1) - 1
138 userweight = (1+Mm**2/Etau**2) + (1-Mm**2/Etau**2) * cth
139 END SUBROUTINE USEREVENT

Warning: This function can be used to change the centre-of-mass energy and masses of the particles. However,
one must the re-compute the flux factors and 𝜉max relations.

16 Chapter 1. Getting started

McMule, Release v0.5.1

1.4.3 Boosting into the lab frame

We begin by writing down the momentum of tau in the lab frame as

𝑝1 =
(︁
0, |𝑝|

√︀
1− cos 𝜃2, |𝑝| cos 𝜃,𝐸

)︁
with |𝑝| =

√︀
𝐸2 −𝑚2

𝜏 . Next, we use the McMule function boost_back() to boost the momenta we are given into the
lab frame. From there we can continue applying our cuts as before, utilising the McMule function cos_th to calculate
the angle between the particle and the beam axis.

73 FUNCTION QUANT(q1,q2,q3,q4,q5,q6,q7)
74

75 real (kind=prec), intent(in) :: q1(4),q2(4),q3(4),q4(4), q5(4),q6(4),q7(4)
76 real (kind=prec) :: ptau, cos_e, cos_g
77 real (kind=prec) :: p1Lab(4), p2Lab(4), p5Lab(4), p6Lab(4)
78 real (kind=prec) :: quant(nr_q)
79 real (kind=prec) :: gs(4), gh(4)
80 real (kind=prec), parameter :: ez(4) = (/ 0., 0., 1., 0. /)
81 !! ==== keep the line below in any case ==== !!
82 call fix_mu
83 pass_cut = .true.
84

85 ptau = sqrt(Etau**2-Mtau**2)
86 p1Lab = (/ 0., ptau*sqrt(1-cth**2), ptau*cth, Etau /)
87

88 p1Lab = boost_back(p1Lab, q1)
89 p2Lab = boost_back(p1Lab, q2)
90 p5Lab = boost_back(p1Lab, q5)
91 p6Lab = boost_back(p1Lab, q6)
92

93 if (p5Lab(4) > p6Lab(4)) then
94 gh = p5Lab ; gs = p6Lab
95 else
96 gh = p6Lab ; gs = p5Lab
97 endif
98

99 cos_e = cos_th(p2Lab, ez)
100 cos_g = cos_th(gh , ez)
101

102 if ((cos_e > 0.95 .or. cos_e < -0.75) .or. (cos_g > 0.95 .or. cos_g < -0.75)) then
103 pass_cut = .false.
104 return
105 endif
106

107 if(exclusiveQ == 1) then
108 if (gh(4) < 220. .or. gs(4) > 220.) then
109 pass_cut = .false.
110 return
111 endif
112 else
113 if (gh(4) < 220.) then
114 pass_cut = .false.
115 return

(continues on next page)

1.4. More complicated runs 17

McMule, Release v0.5.1

(continued from previous page)

116 endif
117 endif
118

119 names(1) = 'minv'
120 quant(1) = sqrt(sq(q2+gh))
121

122 names(2) = 'Ee'
123 quant(2) = p2Lab(4)
124

125 names(3) = 'cos_e'
126 quant(3) = cos_e
127

128 names(4) = 'cos_g'
129 quant(4) = cos_g
130 END FUNCTION QUANT

1.4.4 Running and analysis

At this point we can run McMule and proceed with the analysis as before. We need to do two runs, one for the exclusive
and one for the inclusive. However, only the real corrections differ, therefore we only need 24 runs and not 36. The last
argument of the run command in the menu file will be passed as the observable we have defined in inituser(). We
need to pass 1 (exclusive) or 0 (inclusive) as shown in Listing 1.82

Listing 1.8: The menu file for the present calculation

image registry.gitlab.com/mule-tools/mcmule:redesign example3/user.f95

conf example3/m2enng-tau-e.conf

run 75217 1.000000 m2enng0 tau-e 0
run 52506 1.000000 m2enng0 tau-e 0
run 22671 1.000000 m2enng0 tau-e 0

run 53796 1.000000 m2enngV tau-e 0
run 15282 1.000000 m2enngV tau-e 0
run 89444 1.000000 m2enngV tau-e 0

run 98870 0.600000 m2enngC tau-e 0
run 91991 0.600000 m2enngC tau-e 0
run 79769 0.600000 m2enngC tau-e 0

run 21175 0.800000 m2enngC tau-e 0
run 57581 0.800000 m2enngC tau-e 0
run 81929 0.800000 m2enngC tau-e 0

run 70604 0.600000 m2enngR tau-e 0
run 33013 0.600000 m2enngR tau-e 0
run 22530 0.600000 m2enngR tau-e 0

(continues on next page)

2 Looking at the results from our previous run, we can deduce that 𝜉𝑐 ∼ 0.7 is the optimal place for running since 𝜎𝑛(𝜉𝑐 = 0.7) ∼ 𝜎𝑛+1(𝜉𝑐 =
0.7) which reduces cancellation between the different pieces. This optimisation is not strictly necessary and we still run for two values of 𝜉𝑐, 0.6
and 0.8.

18 Chapter 1. Getting started

McMule, Release v0.5.1

(continued from previous page)

run 82222 0.800000 m2enngR tau-e 0
run 30935 0.800000 m2enngR tau-e 0
run 40689 0.800000 m2enngR tau-e 0

run 70604 0.600000 m2enngR tau-e 1
run 33013 0.600000 m2enngR tau-e 1
run 22530 0.600000 m2enngR tau-e 1

run 82222 0.800000 m2enngR tau-e 1
run 30935 0.800000 m2enngR tau-e 1
run 40689 0.800000 m2enngR tau-e 1

We can now run McMule. When analysing the output we need to take care to not mix the different observables which
we do by passing the optional argument obs to sigma(). The resulting plot is shown in :numref:fig_Eboost:

Listing 1.9: The analysis pipeline for this calculation

Loading the LO is the same as before
setup(folder='example3/out.tar.bz2')
LO = scaleset(mergefks(sigma('m2enng0')), GF**2*lifetime*alpha)

Import the excl. NLO by specifying the observable
for the real corrections
NLOexcl = scaleset(mergefks(

sigma('m2enngR', obs='e'),
sigma('m2enngC'),
anyxi=sigma('m2enngV')

), GF**2*lifetime*alpha**2)
fullNLOexcl = addsets([LO, NLOexcl])

NLOincl = scaleset(mergefks(
sigma('m2enngR', obs='i'),
sigma('m2enngC'),
anyxi=sigma('m2enngV')

), GF**2*lifetime*alpha**2)
fullNLOincl = addsets([LO, NLOincl])

print("BR_0 = ", printnumber(LO['value']))
print("BRexcl = ", printnumber(fullNLOexcl['value']))
print("BRincl = ", printnumber(fullNLOincl['value']))

fig3, (ax1, ax2) = kplot(
{

'lo': scaleplot(LO['Ee'], 1e3),
'nlo': scaleplot(NLOexcl['Ee'], 1e3),
'nlo2': scaleplot(NLOincl['Ee'], 1e3)

},
labelx=r"$E_e\,/\,{\rm GeV}$",
labelsigma=r"$\D\mathcal{B}/\D E_{e}$",
legend={

(continues on next page)

1.4. More complicated runs 19

McMule, Release v0.5.1

(continued from previous page)

'lo': '$\\rm LO$',
'nlo': '$\\rm NLO\ exclusive$',
'nlo2': '$\\rm NLO\ inclusive$'

},
legendopts={'what': 'l', 'loc': 'lower left'}

)
ax2.set_ylim(-0.12,0.02)

Figure 1.4: Results of the toy run to compute 𝐸𝑒 in the labframe.

20 Chapter 1. Getting started

Chapter 2

Structure of McMule

McMule is written in Fortran 95 with helper and analysis tools written in python1. The code is written with two kinds
of applications in mind. First, several processes are implemented, some at NLO, some at NNLO. For these, the user can
define an arbitrary (infrared safe), fully differential observable and compute cross sections and distributions. Second,
the program is set up such that additional processes can be implemented by supplying the relevant matrix elements.

2.1 Modular structure of the code

McMule consists of several modules with a simple, mostly hierarchic structure. The relation between the most important
Fortran modules is depicted in Figure 2.1. A solid arrow indicates “using” the full module, whereas a dashed arrow is
indicative of partial use. In what follows we give a brief description of the various modules and mention some variables
that play a prominent role in the interplay between the modules.

Figure 2.1: The structure of McMule

global_def:
This module simply provides some parameters such as fermion masses that are needed throughout the code. It
also defines real(kind=prec) as a generic type for the precision used.2 Currently, this simply corresponds to
double precision.

functions:
This module is a library of basic functions that are needed at various points in the code. This includes dot
products, eikonal factors, the integrated eikonal, and an interface for scalar integral functions among others.

collier:
This is an external module [3, 4, 5, 6]. It will be linked to McMule during compilation and provides the numerical
evaluations of the scalar and in some cases tensor integral functions in functions.

phase_space:
The routines for generating phase-space points and their weights are collected in this module. Phase-space
routines ending with FKS are prepared for the FKS subtraction procedure with a single unresolved photon. In
the weight of such routines a factor 𝜉1 is omitted to allow the implementation of the distributions in the FKS
method. This corresponds to a global variable xiout1. This factor has to be included in the integrand of
the module integrands. Also the variable ksoft1 is provided that corresponds to the photon momentum
without the (vanishing) energy factor 𝜉1. Routines ending with FKSS are routines with two unresolved photons.
Correspondingly, a factor 𝜉1 𝜉2 is missing in the weight and xiout1 and xiout2, as well as ksoft1 and ksoft2

1 Additionally to the python tool a Mathematica tool is available.
2 For quad precision prec=16 and the compiler flag -fdefault-real-16 is required.

21

McMule, Release v0.5.1

are provided. To ensure numerical stability it is often required to tune the phase-space routine to a particular
kinematic situation.

openloops:
This is the external OpenLoops library [1, 2] that we use for some real-virtual matrix elements. It is pulled as a
git submodule and linked to McMule during compilation.

olinterface:
This connects openloops to the rest of McMule by initialising OpenLoops for the process under considera-
tion and converting to and from the OpenLoops conventions which are slightly different than the ones used by
McMule.

{pg}_mat_el:
Matrix elements are grouped into process groups such as muon decay (mudec) or 𝜇-𝑒 and 𝜇-𝑝 scattering (mue).
Each process group contains a mat_el module that provides all matrix elements for its group. Simple matrix
elements are coded directly in this module. More complicated results are imported from sub-modules not shown
in Figure 2.1. A matrix element starting with P contains a polarised initial state. A matrix element ending in av
is averaged over a neutrino pair in the final state.

{pg}:
In this module the soft limits of all applicable matrix elements of a process group are provided to allow for the
soft subtractions required in the FKS scheme. These limits are simply the eikonal factor evaluated with ksoft
from phase_space times the reduced matrix element, provided through mat_el.

This module also functions as the interface of the process group, exposing all necessary functions that are im-
ported by

mat_el,
which collects all matrix elements as well as their particle labelling or PID.

user:
For a user of the code who wants to run for an already implemented process, this is the only relevant module. At
the beginning of the module, the user has to specify the number of quantities to be computed, nr_q, the number
of bins in the histogram, nr_bins, as well as their lower and upper boundaries, min_val and max_val. The
last three quantities are arrays of length nr_q. The quantities themselves, i.e. the measurement function, is to
be defined by the user in terms of the momenta of the particles in quant(). Cuts can be applied by setting the
logical variable pass_cut to false3. Some auxiliary functions like (pseudo)rapidity, transverse momentum etc.
are predefined in functions. Each quantity has to be given a name through the array names.

Further, user contains a subroutine called inituser(). This allows the user to read additional input at runtime,
for example which of multiple cuts should be calculated. It also allows the user to print some information on the
configuration implemented. Needless to say that it is good idea to do this for documentation purposes.

vegas:
As the name suggests this module contains the adaptive Monte Carlo routine vegas [15] . The binning routine
bin_it is also in this module, hence the need for the binning metadata, i.e. the number of bins and histograms
(nr_bins and nr_q, respectively) as well as their bounds (min_val and max_val) and names, from user.

integrands:
In this module the functions that are to be integrated by vegas are coded. There are three types of integrands:
non-subtracted, single-subtracted, and double-subtracted integrands, corresponding to the three parts of the
FKS2 scheme [8, 25]. The matrix elements to be evaluated and the phase-space routines used are set using
function pointers through a subroutine initpiece. The factors 𝜉𝑖 that were omitted in the phase-space weight
have to be included here for the single- and double-subtracted integrands.

mcmule:
This is the main program, but actually does little else than read the inputs and call vegaswith a function provided
by integrands.

3 Technically, pass_cut is a list of length nr_q, allowing to decide whether to cut for each histogram separately.

22 Chapter 2. Structure of McMule

McMule, Release v0.5.1

test:
For developing purposes, a separate main program exists that is used to validate the code after each change.
Reference values for matrix elements and results of short integrations are stored here and compared against.

The library of matrix elements deserves a few comments. As matrix elements quickly become very large, we store
them separately from the main code. This makes it also easy to extend the program by minimising the code that needs
to be changed.

We group matrix elements into process groups, generic processes, and generic pieces as indicated in Appendix Avail-
able processes and which_piece. The generic process is a prototype for the physical process such as ℓ𝑝 → ℓ𝑝 where
the flavour of the lepton ℓ is left open. The generic piece describes a part of the calculation such as the real or vir-
tual corrections, i.e. the different pieces of (6.1) (or correspondingly (6.7) at NNLO), that themselves may be further
subdivided as is convenient. In particular, in some cases a generic piece is split into various partitions (cf. Section
Phase-space generation for details on why that is important).

2.2 What happens when running

In the following we discuss what happens behind the scene when asking McMule to perform the calculation of m2enng0
in Section Simple runs at LO.

1. When started, mcmule reads options from stdin as specified in Table 1.1.

2. Once McMule knows its configuration it associates the numerical values of the masses, as specified through
flavour. In particular, we set the generic masses Mm and Me to Mtau and Mel. This is done in init_flavour(),
defined in global_def. For other processes this might also involve setting e.g. centre-of-mass energies scms
to default values.

3. Next, the function to be integrated by vegas is determined. This is a function stored in integrands. There are
basically three types of integrands: a standard, non-subtracted integrand, sigma_0, a single-subtracted integrand
needed beyond LO, sigma_1, and a double-subtracted integrand needed beyond NLO, sigma_2. Which inte-
grand is needed and what matrix elements and phase-space it depends on is determined by calling the function
init_piece which uses the variable which_piece to point function pointers at the necessary procedures. For
our LO case, init_piece sets the integrand to sigma_0 and fixes the dimension of the integration to ndim = 8.

4. The matrix element pointer is assigned to the matrix element that needs to be called, Pm2enngAV(q1,n1,q2,
q3,q4,q5). The name of the function suggests we compute 𝜇(𝑞1, 𝑛1) → [𝜈(𝑞3)𝜈(𝑞4)]𝑒(𝑞2)𝛾(𝑞5) with the
polarisation vector n1 of the initial lepton. Even though we average over the neutrinos, their momenta are still
given for completeness.

5. The interplay between the function sigma_0(x,wgt,ndim) and vegas is as usual, through an array of random
numbers x of length ndim that corresponds to the dimension of the integration. In addition there is the vegas
weight of the event, wgt due to the Jacobian introduced by the importance sampling. The function sigma_0
simply evaluates the complete weight wg of a particular event by combining wgt with the matrix element sup-
plemented by symmetry, flux, and phase-space factors.

1. In a first step a phase-space routine of phase_space is called. For our LO calculation, init_piece
pointed a pointer to the phase-space routine psd5_25(), a phase-space routine optimised for radiative
lepton decays (cf. Section Phase-space generation). This will be called as a first step in the integrand to
generate the momenta with correct masses as well as the phase-space weight weight.

2. With these momenta the observables to be computed are evaluated with a call to quant(). If one of them
passes the cuts, the variable cuts is set to true.

3. This triggers the computation of the matrix element and the assembly of the full weight.

4. In a last step, the routine bin_it, stored in vegas, is called to put the weight into the correct bins of the
various distributions. If the variable under- or overshoots the bounds specified by min_val and max_val,
the event is placed into dedicated, infinitely big under- and overflow bins.

2.2. What happens when running 23

McMule, Release v0.5.1

These steps are done for all events and those after pre-conditioning are used to obtain the final distributions.

6. After preconditioning the state of the integrator is reset, as is usual.

7. During the main run, the code generates a statefile from which the full state of the integrator can be recon-
structed should the integration be interrupted (cf. Section Differential distributions and intermediary state files
for details). This makes the statefile ideal to also store results in a compact format.

8. The value and error estimate of the integration is printed to stdout.

To analyse these results, we provide a python tool pymule, additionally to the main code for McMule. pymule uses
numpy [26] for data storage and matplotlib for plotting [13]. While pymule works with any python interpreter,
IPython [22] is recommended. We will encountered pymule in Section Analysing the results when we discuss how to
use it to analyse results. A full list of functions provided can be found in Appendix pymule user guide.

24 Chapter 2. Structure of McMule

Chapter 3

General aspects of using McMule

In this section, we will collect a few general points of interest regarding McMule. In particular, we will discuss heuristics
on how much statistics is necessary for different contributions in Section Statistics. This is followed by a more in-depth
discussion of the analysis strategy in Section Analysis.

3.1 Statistics

McMule is a Monte Carlo program. This means it samples the integrand at𝑁 (pseudo-)random points to get an estimate
for the integral. However, because it uses the adaptive Monte Carlo integration routine vegas [15], we split 𝑁 = 𝑖×𝑛
into 𝑖 iterations (itmx), each with 𝑛 points (nenter). After each iteration, vegas changes the way it will sample the
next iteration based on the results of the previous one. Hence, the performance of the integration is a subtle interplay
between 𝑖 and 𝑛 – it is not sufficient any more to consider their product 𝑁 .

Further, we always perform the integration in two steps: a pre-conditioning with 𝑖ad × 𝑛ad (nenter_ad and itmx_ad,
respectively), that is used to optimise the integration strategy and after which the result is discarded, and a main inte-
gration that benefits from the integrator’s understanding of the integrand.

Of course there are no one-size-fits-all rules of how to choose the 𝑖 and 𝑛 for pre-conditioning and main run. However,
the following heuristics have proven helpful:

• 𝑛 is always much larger than 𝑖. For very simple integrands, 𝑛 = 𝒪(10 · 103) and 𝑖 = 𝒪(10).

• Increasing 𝑛 reduces errors that can be thought of as systematic because it allows the integrator to ‘discover’
new features of the integrand. Increasing 𝑖 on the other hand will rarely have that effect and only improves the
statistical error. This is especially true for distributions

• There is no real limit on 𝑛, except that it has to fit into the datatype used – integrations with 𝑛 = 𝒪(231 − 1) are
not too uncommon – while 𝑖 is rarely (much) larger than 100.

• For very stringent cuts it can happen that that typical values of 𝑛ad are too small for any point to pass the cuts. In
this case vegas will return NaN, indicating that no events were found. Barring mistakes in the definition of the
cuts, a pre-pre-conditioning with extremely large 𝑛 but 𝑖 = 1−2 can be helpful.

• 𝑛 also needs to be large enough for vegas to reliably find all features of the integrand. It is rarely obvious that
it did, though sometimes it becomes clear when increasing 𝑛 or looking at intermediary results as a function of
the already-completed iterations.

• The main run should always have larger 𝑖 and 𝑛 than the pre-conditioning. Judging how much more is a delicate
game though 𝑖/𝑖ad = 𝒪(5) and 𝑛/𝑛ad = 𝒪(10−50) have been proven helpful.

• If, once the integration is completed, the result is unsatisfactory, take into account the following strategies

25

McMule, Release v0.5.1

– A large 𝜒2/d.o.f. indicates a too small 𝑛. Try to increase 𝑛ad and, to a perhaps lesser extent, 𝑛.

– Increase 𝑖. Often it is a good idea to consciously set 𝑖 to a value so large that the integrator will never reach
it and to keep looking at ‘intermediary’ results.

– If the error is small enough for the application but the result seems incorrect (for example because the 𝜉𝑐
dependence does not vanish), massively increase 𝑛.

• Real corrections need much more statistics in both 𝑖 and 𝑛 (𝒪(10) times more for 𝑛, 𝒪(2) for 𝑖) than the corre-
sponding LO calculations because of the higher-dimensional phase-space.

• Virtual corrections have the same number of dimensions as the LO calculation and can go by with only a modest
increase to account for the added functional complexity.

• vegas tends to underestimate the numerical error.

These guidelines are often helpful but should not be considered infallible as they are just that – guidelines.

McMule is not parallelised; however, because Monte Carlo integrations require a random seed anyway, it is possible to
calculate multiple estimates of the same integral using different random seeds 𝑧1 and combining the results obtained
this way. This also allows to for a better, more reliable understanding of the error estimate.

3.2 Analysis

Once the Monte Carlo has run, an offline analysis of the results is required. This entails loading, averaging, and
combining the data. This is automatised in pymule but the basic steps are

0. Load the data into a suitable analysis framework such as python.

1. Combine the different random seeds into one result per contribution and 𝜉𝑐. The 𝜒2/d.o.f. of this merging must
be small. Otherwise, try to increase the statistics or choose of different phase-space parametrisation.

2. Add all contributions that combine into one of the physical contributions (6.11). This includes any partitioning
done in Section Phase-space generation.

3. (optional) At NℓLO, perform a fit1

𝜎
(ℓ)
𝑛+𝑗 = 𝑐

(𝑗)
0 + 𝑐

(𝑗)
1 log 𝜉𝑐 + 𝑐

(𝑗)
2 log2 𝜉𝑐 + · · ·+ 𝑐

(𝑗)
ℓ logℓ =

ℓ∑︁
𝑖=0

𝑐
(𝑗)
𝑖 log𝑖 𝜉𝑐 (3.1)

This has the advantage that it very clearly quantifies any residual 𝜉𝑐 dependence. We will come back to this issue
in Section Study of \xi_{c} dependence.

4. Combine all physical contributions of (6.10) into 𝜎(ℓ)(𝜉𝑐) which has to be 𝜉𝑐 independent.

5. Perform detailed checks on 𝜉𝑐 independence. This is especially important on the first time a particular configu-
ration is run. Beyond NLO, it is also extremely helpful to check whether the sum of the fits (3.1) is compatible
with a constant, i.e. whether for all 1 ≤ 𝑖 ≤ ℓ ⃒⃒⃒⃒

⃒
∑︀ℓ

𝑗=0 𝑐
(𝑗)
𝑖∑︀ℓ

𝑗=0 𝛿𝑐
(𝑗)
𝑖

⃒⃒⃒⃒
⃒ < 1 (3.2)

where 𝛿𝑐(𝑗)𝑖 is the error estimate on the coefficient 𝑐(𝑗)𝑖 .2 pymule’s mergefkswithplot() can be helpful here.

If (3.2) is not satisfied or only very poorly, try to run the Monte Carlo again with an increased 𝑛.
1 Note that it is important to perform the fit after combining the phase-space partitionings (cf. Section Phase-space generation) but before adding

(6.10) as this model is only valid for the terms of (6.11)
2 Note that the error estimate on the sum of the total coefficients in (3.2) is rather poor and does not include correlations between different 𝑐𝑖.

26 Chapter 3. General aspects of using McMule

McMule, Release v0.5.1

6. Merge the different estimates of (6.10) from the different 𝜉𝑐 into one final number 𝜎(ℓ). The 𝜒2/d.o.f. of this
merging must be small.

7. Repeat the above for any distributions produced, though often bin-wise fitting as in Point 3 is rarely necessary or
helpful.

If a total cross section is 𝜉𝑐 independent but the distributions (or a cross section obtained after applying cuts) are
not, this is a hint that the distribution (or the applied cuts) is not IR safe.

These steps have been almost completely automatised in pymule and Mathematica. Though all steps of this pipeline
could be easily implemented in any other language by following the specification of the file format below (Section
Differential distributions and intermediary state files).

3.3 Manual compilation

You might need to compile McMule manually if you are not using a sufficiently recent Linux distribution or want to
work it on yourself. In this case, you first need to obtain a copy of the McMule source code. We recommend the
following approach

$ git clone --recursive https://gitlab.com/mule-tools/mcmule

To build McMule, you will need

• Python 3.8 or newer

• Meson 0.64.0 or newer

• ninja 1.8.2 or newer

• GFortran 4.8 or newer

Now you need to configure and build McMule using meson and ninja

$ meson setup build
$ ninja -C build

Note that this will distribute the build on as many CPUs as your machine has which can cause memory issues. If you
do not want to do that, add -j <number of jobs> flag to the ninja command. Despite the parallelisation, a full build
of McMule is can take up to 1h, depending on your machine. If you only need to compile some parts of McMule (such
as Bhabha scattering), you can control which process groups are build

$ meson setup build -Dgroups=mue,ee

If you need debug symbols, you can disable optimisation

$ meson setup build --buildtype=debug

Alternatively, we provide a Docker container [17] for easy deployment and legacy results (cf. Section Basics of con-
tainerisation). In multi-user environments, udocker [12] can be used instead. In either case, a pre-compiled copy of
the code can be obtained by calling

$ docker pull registry.gitlab.com/mule-tools/mcmule # requires Docker to be installed
$ udocker pull registry.gitlab.com/mule-tools/mcmule # requires uDocker to be installed

3.3. Manual compilation 27

https://mesonbuild.com/
https://ninja-build.org

McMule, Release v0.5.1

3.3.1 Running in a container

Linux containers are an emergent new technology in the software engineering world. The main idea behind such
containerisation is to bundle all dependencies with a software when shipping. This allows the software to be executed
regardless of the Linux distribution running on the host system without having to install any software beyond the
containerising tool. This is possible without any measurable loss in performance. For these reasons, containerising
McMule allows the code to be easily deployed on any modern computer, including systems running macOS or Windows
(albeit with a loss of performance), and all results to be perfectly reproducible.

A popular containerisation tool is Docker [17]. Unfortunately, Docker requires some processes to be executed in
privileged mode which is rarely available in the multi-user environments usually found on computing infrastructures.
This led to the creation of udocker [12] which circumvents these problems.

udocker can be installed by calling

Warning: It might be advisable to point the variable UDOCKER_DIR to a folder on a drive without quota first as
udocker requires sizeable disk space

$ curl https://raw.githubusercontent.com/indigo-dc/udocker/master/udocker.py > udocker
$ chmod u+rx ./udocker
$./udocker install

Once Docker or udocker has been installed, McMule can be downloaded by simply calling

$ docker pull yulrich/mcmule # requires Docker to be installed
$ udocker pull yulrich/mcmule # requires udocker to be installed

This automatically fetches the latest public release of McMule deemed stable by the McMule collaboration. We will
discuss some technical details behind containerisation in Section Basics of containerisation.

McMule can be run containerised on a specified user.f95 which is compiled automatically into mcmule. This is
possible both directly or using menu files as discussed above. To run McMule directly on a specified user.f95,
simply call

$./tools/run-docker.sh -i yulrich/mcmule:latest -u path/to/user.f95 -r

This requests the same input already discussed in Table 1.1. To run a containerised menu file, add an image command
before the first conf command in the menu file

image yulrich/mcmule:latest path/to/user.f95
conf babar-tau-e/m2enng-tau-e.conf

run 70998 0.500000 m2enngR tau-e 0
...

Note that only one image command per menu file is allowed. After this, the menu file can be executed normally
though the drive where Docker or udocker is installed needs to be shared between all nodes working on the job. It is
recommended that all legacy results use be produced with udocker or Docker.

28 Chapter 3. General aspects of using McMule

Chapter 4

Technical aspects of McMule

In this section, we will review the very technical details of the implementation. This is meant for those readers, who wish
to truly understand the nuts and bolts holding the code together. We begin by discussing the phase-space generation
and potential pitfalls in Section Phase-space generation. Next, in Section Implementation of FKS schemes, we discuss
how the FKS scheme [8, 23, 25, 28, 29]. This is meant for those readers, who wish to truly understand the nuts and
bolts holding the code together. We begin by discussing the phase-space generation and potential pitfalls in Section
Phase-space generation. Next, in Section Implementation of FKS schemes, we discuss how the FKS scheme [8, 23,
25, 28, 29] (cf. Appendix The FKS^2 scheme for a review) is implemented in Fortran code. This is followed by a brief
review of the random number generator used in McMule in Section Random number generation. Finally, we give an
account of how the statefiles work and how they are used to store distributions in Section Differential distributions and
intermediary state files.

4.1 Phase-space generation

We use the vegas algorithm for numerical integration [15]. As vegas only works on the hypercube, we need a routine
that maps [0, 1]3𝑛−4 to the momenta of an 𝑛-particle final state, including the corresponding Jacobian. The simplest
way to do this uses iterative two-particle phase-spaces and boosting the generated momenta all back into the frame
under consideration. An example of how this is done is shown in Listing 4.1.

Listing 4.1: Example implementation of iterative phase-space. Not
shown are the checks to make sure that all particles have at least enough
energy for their mass, i.e. that 𝐸𝑖 ≥ 𝑚𝑖.

! use a random number to decide how much energy should
! go into the first particle
minv3 = ra(1)*energy

! use two random numbers to generate the momenta of
! particles 1 and the remainder in the CMS frame
call pair_dec(ra(2:3),energy,q2,m2,qq3,minv3)

! adjust the Jacobian
weight = minv3*energy/pi
weight = weight*0.125*sq_lambda(energy**2,m2,minv3)/energy**2/pi

! use a random number to decide how much energy should
! go into the second particle

(continues on next page)

29

McMule, Release v0.5.1

(continued from previous page)

minv4 = ra(4)*energy
! use two random numbers to generate the momenta of
! particles 2 and the remainder in their rest frame
call pair_dec(ra(5:6),minv3,q3,m3,qq4,minv4)

! adjust the Jacobian
weight = weight*minv4*energy/pi
weight = weight*0.125*sq_lambda(minv3**2,m3,minv4)/minv3**2/pi

! repeat this process until all particles are generated

! boost all generated particles back into the CMS frame

q4 = boost_back(qq4, q4)
q5 = boost_back(qq4, q5)

q3 = boost_back(qq3, q3)
q4 = boost_back(qq3, q4)
q5 = boost_back(qq3, q5)

As soon as we start using FKS, we cannot use this simplistic approach any longer. The 𝑐-distributions of FKS require
the photon energies 𝜉𝑖 to be variables of the integration. We can fix this by first generating the photon explicitly as

𝑘1 = 𝑝𝑛+1 =

√
𝑠

2
𝜉1(1,

√︁
1− 𝑦21 �⃗�⊥, 𝑦1) (4.1)

where �⃗�⊥ is a (𝑑− 2) dimensional unit vector and the ranges of 𝑦1 (the cosine of the angle) and 𝜉1 (the scaled energy)
are −1 ≤ 𝑦1 ≤ 1 and 0 ≤ 𝜉1 ≤ 𝜉max, respectively. The upper bound 𝜉max depends on the masses of the outgoing
particles. Following [28] we find

𝜉max = 1−

(︁∑︀
𝑖 𝑚𝑖

)︁2
𝑠

Finally, the remaining particles are generated iteratively again. This can always be done and is guaranteed to work.

For processes with one or more PCSs this approach is suboptimal. The numerical integration can be improved by
orders of magnitude by aligning the pseudo-singular contribution to one of the variables of the integration, as this
allows vegas to optimise the integration procedure accordingly. As an example, consider once again 𝜇 → 𝜈𝜈𝑒𝛾. The
PCS comes from

ℳ(ℓ)
𝑛+1 ∝ 1

𝑞 · 𝑘
=

1

𝜉2
1

1− 𝑦𝛽

where 𝑦 is the angle between photon (𝑘) and electron (𝑞). For large velocities 𝛽 (or equivalently small masses), this
becomes almost singular as 𝑦 → 1. If now 𝑦 is a variable of the integration this can be mediated. An example
implementation is shown in Listing 4.2.

Listing 4.2: Example implementation of a so-called FKS phase-space
where the fifth particle is an FKS photon that may becomes soft. Not
shown are checks whether 𝐸𝑖 ≥ 𝑚𝑖 .

xi5 = ra(1)
y2 = 2*ra(2) - 1.

! generate electron q2 and photon q5 s.t. that the
(continues on next page)

30 Chapter 4. Technical aspects of McMule

McMule, Release v0.5.1

(continued from previous page)

! photon goes into z diractions

eme = energy*ra(3)
pme = sqrt(eme**2-m2**2)
q2 = (/ 0., pme*sqrt(1. - y2**2), pme*y2, eme /)
q5 = (/ 0., 0. , 1. , 1. /)
q5 = 0.5*energy*xi5*q5

! generate euler angles and rotate all momenta

euler_mat = get_euler_mat(ra(4:6))

q2 = matmul(euler_mat,q2)
q5 = matmul(euler_mat,q5)

qq34 = q1-q2-q5
minv34 = sqrt(sq(qq34))

! The event weight, note that a factor xi5**2 has been ommited
weight = energy**3*pme/(4.*(2.*pi)**4)

! generate remaining neutrino momenta

call pair_dec(ra(7:8),minv34,q3,m3,q4,m4,enough_energy)
weight = weight*0.125*sq_lambda(minv34**2,m3,m4)/minv34**2/pi

q3 = boost_back(qq34, q3)
q4 = boost_back(qq34, q4)

The approach outlined above is very easy to do in the case of the muon decay as the neutrinos can absorb any timelike
four-momentum. This is because the 𝛿 function of the phase-space was solved through the neutrino’s pair_dec.
However, for scattering processes where all final state leptons could be measured, this fails. Writing a routine for
𝜇-𝑒-scattering

𝑒(𝑝1) + 𝜇(𝑝2) → 𝑒(𝑝3) + 𝜇(𝑝4) + 𝛾(𝑝5)

that optimises on the incoming electron is rather trivial because its direction stays fixed s.t. the photon just needs to be
generated according to (4.1). The outgoing electron 𝑝3 is more complicated. Writing the 𝑝4-phase-space four- instead
of three-dimensional

dΦ5 = 𝛿(4)(𝑝1 + 𝑝2 − 𝑝3 − 𝑝4 − 𝑝5)𝛿(𝑝
2
4 −𝑀2)Θ(𝐸4)

d4𝑝4
(2𝜋)4

d3𝑝3
(2𝜋)32𝐸3

d3𝑝5
(2𝜋)32𝐸5

we can solve the four-dimensional 𝛿 function for 𝑝4 and proceed for the generation 𝑝3 and 𝑝5 almost as for the muon
decay above. Doing this we obtain for the final 𝛿 function

𝛿(𝑝24 −𝑀2) = 𝛿

(︂
𝑚2 −𝑀2 + 𝑠(1− 𝜉) + 𝐸3

√
𝑠
[︁
𝜉 − 2− 𝑦𝜉𝛽3(𝐸3)

]︁)︂
. (4.2)

When solving this for 𝐸3, we need to take care to avoid extraneous solutions of this radical equation [11]. We have
now obtained our phase-space parametrisation, albeit with one caveat: for anti-collinear photons, i.e. −1 < 𝑦 < 0
with energies

𝜉1 = 1− 𝑚√
𝑠
+

𝑀2

√
𝑠(𝑚−

√
𝑠
< 𝜉 < 𝜉max = 1− (𝑚+𝑀)2

𝑠

4.1. Phase-space generation 31

McMule, Release v0.5.1

there are still two solutions. One of these corresponds to very low-energy electron that are almost produced at rest.
This is rather fortunate as most experiments will have an electron detection threshold higher that this. Otherwise,
phase-spaces optimised this way also define a which_piece for this corner region.

There is one last subtlety when it comes to these type of phase-space optimisations. Optimising the phase-space for
emission from one leg often has adverse effects on terms with dominant emission from another leg. In other words,
the numerical integration works best if there is only one PCS on which the phase-space is tuned. As most processes
have more than one PCS we need to resort to something that was already discussed in the original FKS paper [29].
Scattering processes that involve multiple massless particles have overlapping singular regions. The FKS scheme now
mandates that the phase-space is partitioned in such a way as to isolate at most one singularity per region with each
region having its own phase-space parametrisation. Similarly we have to split the phase-space to contain at most one
PCS as well as the soft singularity. In McMule 𝜇-𝑒 scattering for instance is split as follows1

1 = 𝜃
(︀
𝑠15 > 𝑠35

)︀
+ 𝜃
(︀
𝑠15 < 𝑠35

)︀
with 𝑠𝑖𝑗 = 2𝑝𝑖 · 𝑝𝑗 as usual. The integrand of the first 𝜃 function has a final-state PCS and hence we use the parametri-
sation obtained by solving (4.2). The second 𝜃 function, on the other hand, has an initial-state PCS which can be
treated by just directly parametrising the photon in the centre-of-mass frame as per (4.1). This automatically makes
𝑠15 ∝ (1− 𝛽in𝑦1) a variable of the integration.

For the double-real corrections of 𝜇-𝑒 scattering, we proceed along the same lines except now the argument of the 𝛿
function is more complicated.

4.2 Implementation of FKS schemes

Now that we have a phase-space routine that has 𝜉𝑖 as variables of the integration, we can start implementing the relevant
𝑐-distributions (6.4)

d𝜎
(1)
ℎ (𝜉𝑐) = dΥ1dΦ𝑛,1

(︃
1

𝜉1

)︃
𝑐

d𝜉1

(︁
𝜉21ℳ

(0)
𝑛+1

)︁
(4.3)

= d𝜉1

(︃
dΥ1dΦ𝑛,1

(︁
𝜉21ℳ

(0)
𝑛+1

)︁
− dΥ1dΦ𝑛,1

(︁
ℰℳ(0)

𝑛

)︁
𝜃(𝜉𝑐 − 𝜉1)

)︃
(4.4)

We refer to the first term as the event and the second as the counter-event.

Note that, due to the presence of 𝛿(𝜉1) in the counter-event (that is implemented through the eikonal factor ℰ) the
momenta generated by the phase-space dΥ1dΦ𝑛,1 are different. Thus, it is possible that the momenta of the event pass
the cuts or on-shell conditions, while those of the counter event fail, or vice versa. This subtlety is extremely important
to properly implement the FKS scheme and many problems fundamentally trace back to this.

Finally, we should note that, in order to increase numerical stability, we introduce cuts on 𝜉 and sometimes also on a
parameter that encodes the PCS such as 𝑦 = y2 in (4.1) and Listing 4.2. Events that have values of 𝜉 smaller than this
soft cut are discarded immediately and no subtraction is considered. The dependence on this slicing parameter is not
expected to drop out completely and hence, the soft cut has to be chosen small enough to not influence the result.

An example implementation can be found in Listing 4.3.

1 When implementing this, care must be taken to ensure that the split is also well defined if the photon is soft, i.e. if 𝜉 = 0.

32 Chapter 4. Technical aspects of McMule

McMule, Release v0.5.1

Listing 4.3: An example implementation of the FKS scheme in Fortran.
Not shown are various checks performed, the binning as well as initiali-
sation blocks.

FUNCTION SIGMA_1(x, wgt, ndim)

! The first random number x(1) is xi.
arr = x

! Generate momenta for the event using the function pointer ps
call gen_mom_fks(ps, x, masses(1:nparticle), vecs, weight)

! Whether unphysical or not, take the value of xi
xifix = xiout

! Check if the event is physical ...
if(weight > zero) then
! and whether is passes the cuts
var = quant(vecs(:,1), vecs(:,2), vecs(:,3), vecs(:,4), ...)
cuts = any(pass_cut)
if(cuts) then
! Calculate the xi**2 * M_{n+1}^0 using the pointer matel
mat = matel(vecs(:,1), vecs(:,2), vecs(:,3), vecs(:,4), ...)
mat = xifix*weight*mat
sigma_1 = mat

end if
end if

! Check whether soft subtraction is required
if(xifix < xicut1) then
! Implement the delta function and regenerate events
arr(1) = 0._prec
call gen_mom_fks(ps, arr, masses(1:nparticle), vecs, weight)
! Check whether to include the counter event
if(weight > zero) then
var = quant(vecs(:,1), vecs(:,2), vecs(:,3), vecs(:,4), ...)
cuts = any(pass_cut)
if(cuts) then
mat = matel_s(vecs(:,1), vecs(:,2), vecs(:,3), vecs(:,4), ...)
mat = weight*mat/xifix
sigma_1 = sigma_1 - mat

endif
endif

endif
END FUNCTION SIGMA_1

4.2. Implementation of FKS schemes 33

McMule, Release v0.5.1

4.3 Calling procedures and function pointers

McMule uses function pointers to keep track of which functions to call for the integrand, phase-space routine, and
matrix element(s). These pointers are assigned during init_piece() and then called throughout integrands and
phase_space. The pointers for the phase-space generator and integrand are just assigned using the => operator, i.e.

ps => psx2 ; fxn => sigma_0

The relevant abstract interface for the integrand fxn is

abstract interface
function integrand(x,wgt,ndim)
import prec
integer :: ndim
real(kind=prec) :: x(ndim),wgt
real(kind=prec) :: integrand

end function integrand
end interface

Doing the same for the matrix elements is not possible as they do not have a consistent interface. Instead, we are using
a C function set_func that is implemented in a separate file to assign the functions, ignoring the interface

call set_func('00000000', pm2enngav)
call set_func('00000001', pm2ennav)
call set_func('11111111', m2enn_part)

The first argument corresponds to the type of functions that is being set.

Table 4.1: Arguments for set_func

Bitmask Name Description
00000000 matel0 hard matrix element
00000001 matel1 reduced matrix element
00000010 matel2 doubly reduced matrix element
11111111 partfunc particle string function
10000001 matel_s single soft limit
10000010 matel_hs hard-soft limit
10000100 matel_sh soft-hard limit
10000110 matel_ss double soft limit

If the soft limits are not assigned, they are auto-generated using the partfunc.

4.4 Optional parameters for integrands

The integration is configured during the initpiece() routine. Additionally to identifying what is to be integrated (cf.
Section Calling procedures and function pointers), one also configures other parameters such as the dimensionality or
the masses involved.

34 Chapter 4. Technical aspects of McMule

McMule, Release v0.5.1

Table 4.2: Frozen Delights!

Variable Type Description Required
nparticle integer the number of total parti-

cles (initial & final)
yes

ndim integer

the dimensionality of the
phase space.
usually this is 3𝑛𝑓 − 4,
for calculations with
extra integrations, these
are included

yes

masses real(:) the masses of all particles yes
xicut1 real the value of 𝜉𝑐 for the first

subtraction
for real corrections

xicut2 real the value of 𝜉𝑐 for the sec-
ond subtraction

for double-real corrections

xieik1 real the value of 𝜉𝑐 for the first
eikonal

for virtual or real-virtual
corrections

xieik2 real the value of 𝜉𝑐 for the sec-
ond eikonal

for double-virtual correc-
tions

polarised integer the number of polarised
particles

no, defaults to 0

symfac real the symmetry factor for in-
distinguishable final states

no, defaults to 1

softcut real the soft cut parameter no, but recommended, de-
faults to 0

collcut real the collinear cut parameter no, but recommended, de-
faults to 0

ntsSwitch real the NTS switching point only for NTS matrix elem-
nts

4.4.1 𝜉𝑐 parameters

For the 𝜉𝑐 parameters, the user enters a value between zero (exclusive) and one (inclusive). However, the FKS procedure
requires the bounds of (6.5) and the parameters hence need to be rescaled accordingly. In principle the user may enter
two different values (xinormcut = xinormcut1 and xinormcut2) though this is rarely called for.

4.4.2 Soft and collinear cut parameter

To improve numerical stability, we set events that have a value of 𝜉 (𝑦) lower than softcut (collcut) to zero.

Warning: This introduces a systematic error that needs to be studied. For small values, the improvement in
stability is generally worth a small error that is anyway drowned out by the statistical error

4.4. Optional parameters for integrands 35

McMule, Release v0.5.1

This means that we are changing the integration (4.2)

d𝜎
(1)
ℎ (𝜉𝑐) → d𝜉1 × 𝜃(𝜉 − softcut) (4.5)

×

(︃
dΥ1dΦ𝑛,1

(︁
𝜉21ℳ

(0)
𝑛+1

)︁
− dΥ1dΦ𝑛,1

(︁
ℰℳ(0)

𝑛

)︁
𝜃(𝜉𝑐 − 𝜉1)

)︃
(4.6)

and similarly with collcut. We have found that values of softcut = 1e-10 and collcut = 1.e-11 give reliable
results.

4.5 Random number generation

A Monte Carlo integrator relies on a (pseudo) random number generator (RNG or PRNG) to work. The pseudo-random
numbers need to be of high enough quality, i.e. have no discernible pattern and a long period, to consider each point
of the integration independent but the RNG needs to be simple enough to be called many billion times without being a
significant source of runtime. RNGs used in Monte Carlo applications are generally poor in quality and often predictable
s.t. they could not be used for cryptographic applications.

A commonly used trade-off between unpredictability and simplicity, both in speed and implementation, is the Park-
Miller RNG, also known as minstd[19]. As a linear congruential generator, its (𝑘 + 1)th output 𝑥𝑘+1 can be found
as

𝑧𝑘+1 = 𝑎 · 𝑧𝑘 mod 𝑚 = 𝑎𝑘+1𝑧1 mod 𝑚 and 𝑥𝑘 = 𝑧𝑘/𝑚 ∈ (0, 1)

where 𝑚 is a large, preferably prime, number and 2 < 𝑎 < 𝑚− 1 an integer. The initial value 𝑧1 is called the random
seed and is chosen integer between 1 and 𝑚−1. It can easily be seen that any such RNG has a fixed period2 𝑝 < 𝑚 s.t.
𝑧𝑘+𝑝 = 𝑧𝑘 because any 𝑧𝑘+1 only depends on 𝑧𝑘 and there are finitely many possible 𝑧𝑘. We call the RNG attached to
(𝑚, 𝑎) to be of full period if 𝑝 = 𝑚− 1, i.e. all integers between 1 and 𝑚− 1 appear in the sequence 𝑧𝑘.

Assuming 𝑧1 = 1 then the existence of 𝑝 s.t. 𝑧𝑝+1 = 1 is guaranteed by Fermat’s Theorem3. This means that the RNG
is of full period iff 𝑎 is a primitive root modulo 𝑚, i.e.

∀𝑔 co-prime to 𝑚 ∃𝑘 ∈ Z s.t. 𝑎𝑘 ≡ 𝑔 (mod 𝑚)

Park and Miller suggest to use the Mersenne prime 𝑚 = 231 − 1, noting that there are 534,600,000 primitive roots of
which 7 is the smallest. Because 7𝑏 mod 𝑚 is also a primitive root as long as 𝑏 is co-prime to (𝑚−1), [19] settled on
𝑏 = 5, i.e. 𝑎 = 16807 as a good choice for the multiplier that, per construction, has full period and passes certain tests
of randomness.

The points generated by any such RNG will fall into 𝑛
√
𝑛! ·𝑚 hyperplanes if scattered in an 𝑛 dimensional space [16].

However, for bad choices of the multiplier 𝑎 the number of planes can be a lot smaller4.

Presently, the period length of 𝑝 = 𝑚 − 1 = 231 − 2 is believed to be sufficient though detailed studies quantifying
this would be welcome.

2 Note that, because of the simple recursion the RNG will not repeat any number until the full period is complete
3 If 𝑝 is prime, for any integer 𝑎, 𝑎𝑝 − 𝑎 is a multiple of 𝑝.
4 An infamous example is randu that used 𝑎 = 216 +3 and 𝑚 = 231 that in three dimension produces only 15 planes instead of the maximum

2344.

36 Chapter 4. Technical aspects of McMule

McMule, Release v0.5.1

4.6 Differential distributions and intermediary state files

Distributions are always calculated as histograms by binning each event according to its value for the observable 𝑆.
This is done by having an (𝑛𝑏×𝑛𝑞)-dimensional array5 quant()where 𝑛𝑞 is the number of histograms to be calculated
(nr_q) and 𝑛𝑏 is the number of bins used (nr_bins). The weight of each event dΦ×ℳ× 𝑤 is added to the correct
entry in bit_it where 𝑤 = wgt is the event weight assigned by vegas.

After each iteration of vegas we add quant() (quant2) to an accumulator of the same dimensions called quantsum
(quantsumsq). After 𝑖 iterations, we can calculate the value and error as

d𝜎

d𝑆
≈ quantsum

∆× 𝑖
and 𝛿

(︂
d𝜎

d𝑆

)︂
≈ 1

∆

√︃
quantsumsq− quantsum2/𝑖

𝑖(𝑖− 1)

where ∆ is the bin-size.

Related to this discussion is the concept of intermediary state files. Their purpose is to record the complete state of
the integrator after every iteration in order to recover should the program crash – or more likely be interrupted by a
batch system. McMule uses a custom file format .vegas for this purpose which uses Fortran’s record-based (instead
of stream- or byte-based) format. This means that each entry starts with 32bit unsigned integer, i.e. 4 byte, indicating
the record’s size and ends with the same 32bit integer. As this is automatically done for each record, it minimises the
amount of metadata that have to be written.

The current version (v3) must begin with the magic header and version self-identification shown in Table 4.3. The
latter includes file version information and the first five characters the source tree’s SHA1 hash, obtained using make
hash.

The header is followed by records describing the state of the integrator as shown in Table 4.4. Additionally to infor-
mation required to continue integration such as the current value and grid information, this file also has 300 bytes for
a message. This is usually set by the routine to store information on the fate of the integration such as whether it was
so-far uninterrupted or whether there is reason to believe it to be inconsistent.

The latter point is particularly important. While McMule cannot read intermediary files from a different version of
the file format, it will continue any integration for which it can read the state file. This also includes cases where the
source tree has been changed. In this case McMule prints a warning but continues the integration deriving potentially
inconsistent results.

Table 4.3: The magic header and version information used by 𝑣3. 𝑣1
indicates the current version number and 𝑣2 whether long integers are
used (L) or not (N). 𝑠1-𝑠5 indicate the first five characters of the SHA1
hash produced by the source code at compile time (make hash).

offset 00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
hex 09 00 00 00 20 4D 63 4D 75 6C 65 20 20 09 00 00
ASCII \t ‘ ‘ M c M u l e ‘ ‘ ‘ ‘ \t
offset 10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
hex 00 0A 00 00 00 76 xx xx 20 20 20 20 20 20 20 0A
ASCII \n v 𝑣1 𝑣2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ \n
offset 20 21 22 23 24 25 26 27 28 29 2A 2B 2C 2D 2E 2F
hex 00 00 00 05 00 00 00 xx xx xx xx xx 05 00 00 00
ASCII 𝑠1 𝑠2 𝑠3 𝑠4 𝑠5

5 To be precise, the actual dimensions are (𝑛𝑏 + 2)× 𝑛𝑞 to accommodate under- and overflow bins

4.6. Differential distributions and intermediary state files 37

McMule, Release v0.5.1

Table 4.4: The body of a .vegas file storing all important information.
Each horizontal line indicates as dressed record. In the offset and length
columns, all integers are in hexadecimal notation. Negative numbers
count from the end of file (EOF).

Off Len Type Var. Comment
0030 000C integer it the current iteration
003C 000C integer ndo subdiv. on an axis
0048 0010 real si 𝜎/(𝛿𝜎)2

0058 0010 real swgt 1/(𝛿𝜎)2

0068 0010 real schi (1− it)𝜒+ 𝜎2/(𝛿𝜎)2

0078 1A98 real(50,17) xi the integration grid
1B10 000C integer randy the current random number seed
1B1C 0014 integer integer integer 𝑛𝑞 𝑛𝑏 𝑛𝑠 number of histograms number of

bins len. histogram name
1B30 10𝑛𝑞 + 8

𝑛𝑠𝑛𝑞 + 8
10𝑛𝑞(𝑛𝑏 +
2) + 8

real(n_q) real(n_q)
character(n_s,n_q)
real(n_q,n_b+2) real(n_q,
n_b+2)

minv maxv
names
quantsum
quantsumsq

lower bounds upper bounds
names of 𝑆 accu. histograms
accu. histograms squared

-01440010 real time current runtime in seconds
-01340134 character(300) msg any message
-0000EOF

4.7 Basics of containerisation

McMule is Docker-compatible. Production runs should be performed with Docker [17], or its user-space complement
udocker [12], to facilitate reproducibility and data retention. On Linux, Docker uses chroot to simulate an operat-
ing system with McMule installed. In our case, the underlying system is Alpine Linux, a Linux distribution that is
approximately 5MB in size.

4.7.1 Terminology

To understand Docker, we need to introduce some terms

• An image is a representation of the system’s ’hard disk’. One host system can have multiple images. In (u)Docker,
the images can be listed with docker image ls (udocker images).

• Images can be have names, called tags, otherwise Docker assigns a name as the SHA256 hash.

• Because keeping multiple full file systems is rather wasteful, images are split into layers that can be shared among
images. In uDocker, these are tar files containing the changes made to the file system.

• To execute an image, a container needs to be generated. Essentially, this involves uncompressing all layers into
a directory an chrooting into said directory.

It is important to note, that containers are ephemeral, i.e. changes made to the container are not stored unless explicitly
requested. This is usually not required anyway.

For external interfacing, folders of the host system are mounted into the container.

38 Chapter 4. Technical aspects of McMule

McMule, Release v0.5.1

4.7.2 Building images

Docker images are built using Dockerfiles, a set of instruction on how to create the image from external information
and a base image. To speed up building of the image, McMule uses a custom base image called mcmule-pre that is
constructed as follows

FROM alpine:3.11

LABEL maintainer="yannick.ulrich@psi.ch"
LABEL version="1.0"
LABEL description="The base image for the full McMule suite"

Install a bunch of things
RUN apk add py3-numpy py3-scipy ipython py3-pip git tar gfortran gcc make curl musl-dev
RUN echo "http://dl-8.alpinelinux.org/alpine/edge/community" >> /etc/apk/repositories &&␣
→˓\

apk add py3-matplotlib && \
sed -i '$ d' /etc/apk/repositories

On top of this, McMule is build

FROM yulrich/mcmule-pre:1.0.0

LABEL maintainer="yannick.ulrich@psi.ch"
LABEL version="1.0"
LABEL description="The full McMule suite"
RUN pip3 install git+gitlab.com/mule-tools/pymule.git
COPY . /monte-carlo
WORKDIR /monte-carlo
RUN ./configure
RUN make

To build this image, run

mcmule$ docker build -t $mytagname . # Using Docker
mcmule$ udocker build -t=$mytagname . # Using udocker

The CI system uses udocker to perform builds after each push. Note that using udocker for building requires a patched
version of the code that is available from the McMule collaboration.

4.7.3 Creating containers and running

In Docker, containers are usually created and run in one command

$ docker run --rm $imagename $cmd

The flag –rm makes sure the container is deleted after it is completed. If the command is a shell (usually ash), the flag
-i also needs to be provided.

For udocker, creation and running can be done in two steps

$ udocker create $imagename
this prints the container id
$ udocker run $containerid $cmd

(continues on next page)

4.7. Basics of containerisation 39

McMule, Release v0.5.1

(continued from previous page)

work in container
$ udocker rm $containerid

or in one step

$ udocker run --rm $imagename $cmd

Running containers can be listed with udocker ps and docker ps. For further details, the reader is pointed to the
manuals of Docker and udocker.

40 Chapter 4. Technical aspects of McMule

Chapter 5

Implementing new processes in McMule

In this section we will discuss how new processes can be added to McMule. Not all of the points below might be
applicable to any particular process. Further, all points are merely guidelines that could be deviated from if necessary
as long as proper precautions are taken.

As an example, we will discuss how Møller scattering 𝑒−𝑒− → 𝑒−𝑒− could be implemented.

1. A new process group may need to be created if the process does not fit any of the presently implemented groups.
This requires a new folder with a makefile as well as modifications to the main makefile as discussed in Section
Creating a new process group.

In our case, 𝑒𝑒 → 𝑒𝑒 does not fit any of the groups, so we create a new group that we shall call ee.

2. Calculate the tree-level matrix elements needed at LO and NLO: ℳ(0)
𝑛 and ℳ(0)

𝑛+1. This is relatively straightfor-
ward and – crucially – unambiguous as both are finite in 𝑑 = 4. We will come back to an example calculation in
Section Example calculations in Mathematica.

3. A generic matrix element file is needed to store ‘simple’ matrix elements as well as importing more complicated
matrix elements. Usually, this file should not contain matrix elements that are longer than a few dozen or so
lines. In most cases, this applies to ℳ(0)

𝑛 .

After each matrix element, the PID needs to be denoted in a comment. Further, all required masses as well as
the centre-of-mass energy, called scms to avoid collisions with the function s(pi, pj) = 2pi · pj, need to be
calculated in the matrix element to be as localised as possible.

In the case of Møller scattering, a file ee/ee_mat_el.f95 will contain ℳ(0)
𝑛 . For example, ℳ(0)

𝑛 is imple-
mented there as shown in Listing 5.1.

Listing 5.1: An example implementation of ℳ(0)
𝑛 for Møller scattering.

Note that the electron mass and the centre-of-mass energy are calculated
locally. A global factor of 8𝑒4 = 128𝜋2𝛼2 is included at the end.

FUNCTION EE2EE(p1, p2, p3, p4)
!! e-(p1) e-(p2) -> e-(p3) e-(p4)
!! for massive (and massless) electrons

implicit none
real(kind=prec), intent(in) :: p1(4), p2(4), p3(p4), p4(4), ee2ee
real(kind=prec) :: den1, den2, t, scms, m2
t = sq(p1-p3) ; scms = sq(p1+p2) ; m2 = sq(p1)
den1 = sq(p1-p3) ; den2 = sq(p1-p4)

(continues on next page)

41

McMule, Release v0.5.1

(continued from previous page)

ee2ee=(8**m2**2 - 8*m2*scms + 2*s**2 + 2*scms*t + t**2)/den1**2
ee2ee=ee2ee+2*(12*m2**2 - 8*m2*scms + scms**2) / den1 / den2
ee2ee=ee2ee+(24*m2**2 + scms**2 + t**2 - 8*m2*(s + t))/den2**2

ee2ee = ee2ee * 128*pi**2*alpha**2
END FUNCTION

4. Further, we need an interface file that also contains the soft limits. In our case this is called ee/ee.f95.

The abstract interface partInterface (cf. Section Technical routines) can take care of the generation of all soft
limits for a given particle string, as shown in Listing 5.2.1 See also Section Calling procedures and function
pointers for more details.

Listing 5.2: An example implementation of the soft limits for Møller scat-
tering in the particle framework.

FUNCTION EE2EE_part(p1, p2, p3, p4)
!! e-(p1) e-(p2) -> e-(p3) e-(p4)
!! for massive (and massless) electrons

implicit none
real(kind=prec) :: p1(4), p2(4), p3(p4), p4(4)
type(particles) :: ee2ee_part

ee2ee_part = parts((/part(p1, 1, 1), part(p2, 1, 1), part(p3, 1, -1), part(p4, 1, -1)/))
END FUNCTION

5. Because ℳ(0)
𝑛+1 is border-line large, we will assume that it will be stored in an extra file, ee/ee2eeg.f95. The

required functions are to be imported in ee/ee_mat_el.f95.

6. Calculate the one-loop virtual matrix element ℳ(1)
𝑛 , renormalised in the OS scheme. Of course, this could be

done in any regularisation scheme. However, results in McMule shall be in the FDH (or equivalently the FDF)
scheme. Divergent matrix elements in McMule are implemented as 𝑐−1, 𝑐0, and 𝑐1

ℳ(1)
𝑛 =

(4𝜋)𝜖

Γ(1− 𝜖)

(︃
𝑐−1

𝜖
+ 𝑐0 + 𝑐1𝜖+𝒪(𝜖2)

)︃
.

For 𝑐−1 and 𝑐0 this is equivalent to the conventions employed by Package-X [20] up to a factor 1/16𝜋2. While
not strictly necessary, it is generally advisable to also include 𝑐−1 in the Fortran code.

For NLO calculations, 𝑐1 does not enter. However, we wish to include Møller scattering up to NNLO and hence
will need it sooner rather than later anyway.

In our case, we will create a file ee/ee_ee2eel.f95, which defines a function

FUNCTION EE2EEl(p1, p2, p3, p4, sing, lin)
!! e-(p1) e-(p2) -> e-(p3) e-(p4)
!! for massive electrons

implicit none
real(kind=prec), intent(in) :: p1(4), p2(4), p3(p4), p4(4)

(continues on next page)

1 Further coding may be required if the user needs to isolate different gauge-invariant contributions to the process. For example, for 𝑒𝜇 →
𝑒𝜇 scattering, the function em2em_ee_part = parts((/part(p1, 1, 1), part(p2, 1, 1), part(p3, 1, -1), part(p4, 1, -1)/),
"e") can be used to generate all soft limits due to emissions from the electron line only. Similarly, the function em2em_mm_part can be used for all
soft limits from the muon line only. However, the function em2em_em_part = parts((/part(p1, 1, 1), part(p2, 1, 1), part(p3, 1,
-1), part(p4, 1, -1)/), "x") generates only a subset of all soft contributions due to emissions from both lepton lines. Thus, for this mixed
case, the required soft limits are hard-coded in mue/mue.f95

42 Chapter 5. Implementing new processes in McMule

McMule, Release v0.5.1

(continued from previous page)

real(kind=prec) :: ee2eel
real(kind=prec), intent(out), optional :: sing, lin
...
END FUNCTION

The function shall return 𝑐0 in ee2eel and, if present 𝑐−1 and 𝑐1 in sing and lin.

7. At this stage, a new subroutine in the program test with reference values for all three matrix elements should
be written to test the Fortran implementation. This is done by generating a few points using an appropriate
phase-space routine and comparing to as many digits as possible using the routine check.

In our case, we would construct a subroutine TESTEEMATEL as shown in Listing 5.3.

Listing 5.3: Test routine for 𝑒𝑒 → 𝑒𝑒 matrix elements and integrands.
The reference values for the integration are yet to be determined.

SUBROUTINE TESTEEMATEL
implicit none
real (kind=prec) :: x(2),y(5)
real (kind=prec) :: single, finite, lin
real (kind=prec) :: weight
integer ido

call blockstart("ee matrix elements")
scms = 40000.
musq = me
x = (/0.75,0.5/)
call ps_x2(x,scms,p1,me,p2,me,p3,me,p4,me,weight)
call check("ee2ee" ,ee2ee (p1,p2,p3,p4), 2.273983244890001e4, threshold=2e-8)
call check("ee2eel",ee2eel(p1,p2,p3,p4), 6.964297070440638e7, threshold=2e-8)

scms = 40000.
y = (/0.3,0.6,0.8,0.4,0.9/)
call ps_x3_fks(y,scms,p1,me,p2,me,p3,me,p4,me,p5,weight)
call check("ee2eeg",ee2eeg(p1,p2,p3,p4,p5),7.864297444955537e2, threshold=2e-8)

call blockend(3)
END SUBROUTINE

SUBROUTINE TESTMEEVEGAS
xinormcut1 = 0.2
xinormcut2 = 0.3

call blockstart("Moller VEGAS test")

call test_INT('ee2ee0', sigma_0, 2,10,10, NaN)
call test_INT('ee2eeF', sigma_0, 2,10,10, NaN)
call test_INT('ee2eeR', sigma_1, 5,10,10, NaN)
call blockend(3)
END SUBROUTINE

8. In addition, McMule provides built-in routines for testing the convergence of real-emission matrix elements to
the corresponding soft limits, for ever smaller photon energies.

In our case, we would construct a subroutine

43

McMule, Release v0.5.1

SUBROUTINE TESTEESOFTN1
implicit none
real(kind=prec) y0(5)

call blockstart("e-e \xi->0")
call initflavour("muone")
xinormcut1 = 0.3
y0 = (/0.01,0.6,0.8,0.999,0.01/)

call test_softlimit(y0, ["ee2eeR"])
END SUBROUTINE

where test_soft_limit compares the real matrix element (ee2eeR) with its soft limit implemented in ee/
ee.f95. The comparison starts at the energy defined by the phase-space point y0 and proceeds with ever smaller
photon energies. A flavour (muone) as well as xinormcut1 are required in order to complete the phase-space
generation.

9. Define a default observable in user for this process. This observable must be defined for any which_piece that
might have been defined and test all relevant features of the implementation such as polarisation if applicable.

10. Add the matrix elements to the integrands defined in integrands.f95. This is done by adding a new case
corresponding to the new which_piece in the initpiece().

• for a IR-finite, non-radiative piece (i.e. LO but also VP), add

case('eb2eb0')
call set_func('00000000', eb2eb)
ps => psx2 ; fxn => sigma_0
nparticle = 4 ; ndim = 2
masses(1:4) = (/ Me, Me, Me, Me /)

which adds a which_piece ee2ee0 that is calculated using the matrix element ee2ee. The phase space is
generated with psx4() and integrated using sigma_0() (no subtraction). The process involves 4 particles
and, since it is a 2 → 2 process, the integration is two-dimensional. The masses of the involved particles
are all Me.

• for pieces with an IR cancellation between real and virtual corrections, i.e. calculations involving photon
loops, we need to specify xieik1 (at one-loop) and/or xieik2 (at two-loop)

case('eb2ebF')
call set_func('00000000', eb2ebf)
ps => psx2 ; fxn => sigma_0
nparticle = 4 ; ndim = 2
masses(1:4) = (/ Me, Me, Me, Me /)
xieik1 = xinormcut*(1.-(2*me)**2/scms)

One needs to take care that 𝜉𝑐 is properly normalised. The user will enter a value from 0 to 1 which needs
to be matched to 𝜉𝑐 as defined in (6.5)

• for real corrections we need to use a subtracting integrand, i.e. sigma_1() for single-real and sigma_2()
for double-real corrections.

case('eb2ebR')
call set_func('00000000', eb2ebg)
call set_func('00000001', eb2eb)
call set_func('11111111', eb2eb_part)

(continues on next page)

44 Chapter 5. Implementing new processes in McMule

McMule, Release v0.5.1

(continued from previous page)

ps => psx3_fks ; fxn => sigma_1
nparticle = 5 ; ndim = 5
masses(1:5) = (/ Me, Me, Me, Me, 0._prec /)
xicut1 = xinormcut*(1.-(2*me)**2/scms)

Additionally to the real matrix element eb2ebg, we also specified the reduced matrix element eb2eb and
the particle string function eb2eb_part. Note further changes to the number of particles and phase
space dimension to accommodate the extra photon.

Additionally to these required parameters, there are number of optional parameters such as symmfac (which is
set to 2 for 𝑒−𝑒− → 𝑒−𝑒− because of the two indistinguishable final state particles), polarised (whether to
consider the process polarised), and softCut and collCut. For a full list of parameters, see Section Optional
parameters for integrands.

Once integrands are implemented, a second test routine should be written that runs short integrations against
a reference value. Because test_INT uses a fixed random seed, this is expected to be possible very precisely.
Unfortunately, COLLIER [6] might produce slightly different results on different machines. Hence, integrands
involving complicated loop functions are only required to agree up to 𝒪(10−8).

11. After some short test runs, it should be clear whether new phase-space routines are required. Add those, if need
be, to phase_space as described in Section Phase-space generation.

12. Per default the stringent soft cut, that may be required to stabilise the numerical integration (cf. Section Imple-
mentation of FKS schemes), is set to zero. Study what the smallest value is that still permits integration.

13. Perform very precise 𝜉𝑐 independence studies. Tips on how to do this can be found in Section Study of \xi_{c}
dependence.

At this stage, the NLO calculation is complete and may, after proper integration into McMule and adherence to coding
style has been confirmed, be added to the list of McMule processes in a new release. Should NNLO precision be
required, the following steps should be taken

14. Calculate the real-virtual and double-real matrix elements ℳ(1)
𝑛+1 and ℳ(0)

𝑛+2 and add them to the test routines
as well as integrands.

15. Prepare the 𝑛-particle contribution 𝜎
(2)
𝑛 . In a pinch, massified results can be used also for ℰ̂(𝜉𝑐)ℳ(1)

𝑛 though of
course one should default to the fully massive results.

16. Study whether the pre-defined phase-space routines are sufficient. Even if it was possible to use an old phase-
space at NLO, this might no longer work at NNLO due to the added complexity. Adapt and partition further if
necessary, adding more test integrations in the process.

17. Perform yet more detailed 𝜉𝑐 and soft cut analyses.

In the following we comment on a few aspects of this procedure such as the 𝜉𝑐 study (Section Study of \xi_{c} depen-
dence), the calculation of matrix elements (Section Example calculations in Mathematica), and a brief style guide for
McMule code (Section Coding style and best practice).

45

McMule, Release v0.5.1

5.1 Creating a new process group

Adding Møller scattering to McMule, the example discussed above, requires the addition of a new process group ee.
For this we create a new folder in McMule called ee containing a makefile (Listing 5.4), a mat_el file (ee/ee_mat_el.
f95, Listing 5.5) and a module file (ee/ee.f95, Listing 5.6). Finally, the name of the process group needs to be added
to the GROUPS and WGROUPS variables of the makefile.

Listing 5.4: The bare makefile for the new process group ee. Large matrix
elements that are stored in extra files such as ee/ee2eeg.f95 or ee/
ee_ee2eel.f95 need to be added to the list of AUXFILES

group=ee
AUXFILES=ee_ee2eel.f95 ee_ee2eeg.f95

MAIN=$(group)_mat_el.f95 $(group).f95

include ../makefile.conf

all: $(group).a $(group).mod .obj/tree.sha

$(OBJ): ../.obj/functions.mod

.obj/$(group)_mat_el.o .obj/$(group)_mat_el.mod: \
$(group)_mat_el.f95 $(MOD)

.obj/$(group).o .obj/$(group).mod: \
$(group).f95 .obj/$(group)_mat_el.mod $(MOD)

$(group).mod: .obj/$(group).mod
/+cp+/ $< $@

$(group).a:$(OBJ)
@/+echo AR+/ $@
@$(AR) $@ $^

clean:
rm -f .obj/*.o .obj/*.mod .obj/*.gcda .obj/*.gcno *.mod *.a

Listing 5.5: The file ee/ee_mat_el.f95 imports the complicated matrix
elements ee2eel and ee2eegl, defines the simple matrix element ee2ee
as per 16, and provides an interface for the ℳ(1)𝑓

𝑛 that is called from
integrands.

!!!!!!!!!!!!!!!!!!!!!!!!!
MODULE EE_MAT_EL

!!!!!!!!!!!!!!!!!!!!!!!!!

use functions
use ee_ee2eel, only: ee2eel
use ee_ee2eeg, only: ee2eeg
implicit none

(continues on next page)

46 Chapter 5. Implementing new processes in McMule

McMule, Release v0.5.1

(continued from previous page)

contains

FUNCTION EE2EE(p1,p2,q1,q2)
!! e-(p1) e-(p2) -> e-(q1) e-(q2)
!! for massive electrons

...
END FUNCTION EE2EE

FUNCTION EE2EEF(p1,p2,q1,q2)
!! e-(p1) e-(p2) -> e-(q1) e-(q2)
!! massive electrons

real(kind=prec) :: p1(4),p2(4),q1(4),q2(4)
real(kind=prec) :: ee2eef, mat0, Epart

Epart = sqrt(sq(p1+p2))
mat0 = ee2ee(p1,p2,q1,q2)

ee2eef = ee2eel(p1,p2,q1,q2) + alpha / (2 * pi) * mat0 * (&
- Ieik(xieik1,Epart,p1,p2) + Ieik(xieik1,Epart,p1,q1) &
+ Ieik(xieik1,Epart,p1,q2) + Ieik(xieik1,Epart,p2,q1) &
+ Ieik(xieik1,Epart,p2,q2) - Ieik(xieik1,Epart,q1,q2))

END FUNCTION EE2EEF
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

END MODULE EE_MAT_EL
!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Listing 5.6: The module file ee/ee.f95 which imports all matrix ele-
ments of ee_mat_el and defines the soft limits.

!!!!!!!!!!!!!!!!!!!!!!!!!
MODULE EE

!!!!!!!!!!!!!!!!!!!!!!!!!

use functions
use phase_space, only: ksoft, ksoftA, ksoftB
use ee_mat_el
implicit none
contains

FUNCTION EE2EE_part(p1, p2, p3, p4)
!! e-(p1) e-(p2) --> e-(p3) e-(p4)
!! both massive and massless electrons

real (kind=prec) :: p1(4),p2(4),p3(4),p4(4)
type(particles) :: ee2ee_part
ee2ee_part = parts((/part(p1, 1, 1), part(p2, 1, 1), part(p3, 1, -1), part(p4, 1, -1)/

→˓))
END FUNCTION EE2EE_part

!!!!!!!!!!!!!!!!!!!!!!!!!!!!
END MODULE EE

!!!!!!!!!!!!!!!!!!!!!!!!!!!!

5.1. Creating a new process group 47

McMule, Release v0.5.1

5.2 Study of 𝜉𝑐 dependence

When performing calculations with McMule, we need to check that the dependence of the unphysical 𝜉𝑐 parameter
introduced in the FKS scheme (cf. Appendix The FKS^2 scheme) actually drops out at NLO and NNLO. In principle it
is sufficient to do this once during the development phase. However, we consider it good practice to also do this (albeit
with a reduced range of 𝜉𝑐) for production runs.

Because the 𝜉𝑐 dependence is induced through terms as 𝜉−2𝜖
𝑐 /𝜖, we know the functional dependence of 𝜎(ℓ)

𝑛+𝑗 . For
example, at NLO we have

𝜎(1)
𝑛 (𝜉𝑐) = 𝑎0,0 + 𝑎0,1 log(𝜉𝑐) (5.1)

𝜎
(1)
𝑛+1(𝜉𝑐) = 𝑎1,0 + 𝑎1,1 log(𝜉𝑐) (5.2)

where 𝜉𝑐 independence of 𝜎(1) of course requires

𝑎0,1 + 𝑎1,1 = 0 (5.3)

At NNLO we have

𝜎(2)
𝑛 (𝜉𝑐) = 𝑎0,0 + 𝑎0,1 log(𝜉𝑐) + 𝑎0,2 log(𝜉𝑐)

2 , (5.4)

𝜎
(2)
𝑛+1(𝜉𝑐) = 𝑎1,0 + 𝑎1,1 log(𝜉𝑐) + 𝑎1,2 log(𝜉𝑐)

2 , (5.5)

𝜎
(2)
𝑛+2(𝜉𝑐) = 𝑎2,0 + 𝑎2,1 log(𝜉𝑐) + 𝑎2,2 log(𝜉𝑐)

2 . (5.6)

We require

𝑎0,𝑖 + 𝑎1,𝑖 + 𝑎2,𝑖 = 0

for 𝑖 = 1, 2. However, the IR structure allows for an even stronger statement for the 𝑎𝑗,2 terms

𝑎0,2 = 𝑎2,2 = −𝑎1,2
2

.

Of course we cannot directly calculate any of the 𝑎1,𝑖 or 𝑎2,𝑖 because we use numerical integration to obtain the 𝜎(ℓ)
𝑛+𝑗 .

Still, knowing the coefficients can be extremely helpful when debugging the code or to just quantify how well the 𝜉𝑐
dependence vanishes. Hence, we use a fitting routine to fit the Monte Carlo results after any phase-space partitioning has
been undone. Sometimes non of this is sufficient to pin-point the source of a problem to any one integrand. However,
if the goodness of, for example, 𝜎(2)

𝑛+2(𝜉𝑐) is much worse than the one for 𝜎(2)
𝑛+1(𝜉𝑐), a problem in the double-real

corrections can be expected.

5.3 Example calculations in Mathematica

A thorough understanding of one-loop matrix elements is crucial for any higher-order calculation. In McMule, one-
loop matrix elements either enter as the virtual contribution to NLO corrections or the real-virtual contribution in NNLO
calculations. In any case, a fast numerical routine is required that computes the matrix element.

We perform all one-loop calculations in FDF as this is arguably the simplest scheme available. For theoretical back-
ground, we refer to [25] and references therein.

We use Qgraf for the diagram generation. Using the in-house Mathematica package qgraf we convert Qgraf’s output
for manipulation with Package-X [20]. This package is available on request through the McMule collaboration

48 Chapter 5. Implementing new processes in McMule

McMule, Release v0.5.1

https://gitlab.com/mule-tools/qgraf

An example calculation for the one-loop calculation of 𝜇 → 𝜈𝜈𝑒𝛾 can be found in Listing 5.7. Of course this example
can be made more efficient by, for example, feeding the minimal amount of algebra to the loop integration routine.

When using qgraf for fdf some attention needs to be paid when considering diagrams with closed fermion loops. By
default, qgraf.wl evaluates these traces in 𝑑 dimensions. RunQGraf has an option to keep this from happening.

Listing 5.7: An example on how to calculate the renormalised one-loop
matrix element for 𝜇 → 𝜈𝜈𝑒 in fdf.

<<qgraf.wl
onshell = {
p.p -> M^2, q.q -> m^2, p.q -> s/2

};

A0 = (4GF/Sqrt[2]) "diag1"/.RunQGraf[{"mum"},{"nu","elm"},0] //. {
line[_, x_] -> x, p1->p, q1->p-q, q2->q, _𝛿Z | 𝛿m -> 0

};
A1 = pref /. RunQGraf[{"mum"},{"nu","elm"},1] //. {
line[_, x_] -> x, p1->p, q1->p-q, q2->q, _𝛿Z | 𝛿m -> 0

};

M0=Block[{Dim=4},Simplify[Contract[
1/2 Z2[m] Z2[M] FermionSpinSum[
A0 /. DiracPL -> (Dirac1 - Z5 𝛾5)/2,
A0 /. DiracPL -> (Dirac1 + Z5 𝛾5)/2

]
]] /. onshell]/.{
Z2[M_] -> 1 + (𝛼/(4𝜋)) (-3/(2𝜖)-5/2 + 3/2 Log[M^2/Mu^2]),
Z5 -> 1 - (𝛼/(4𝜋))

};
M1=Block[{Dim=4},Simplify[Contract[
1/2 FermionSpinSum[
A1/.𝛾.k1 -> 𝛾. 4[k1]+I 𝛾5 𝜇,
A0

]
] /. onshell /. {

𝜇^n_ /; EvenQ[n] -> 𝜇2^(n/2), 𝜇 -> 0
}/.{
4[k1]. 4[k1] -> k1.k1 + 𝜇2, 4[k1] -> k1

}]];

M1bare = Simplify[KallenExpand[LoopRefine[LoopRelease[
Pro2LoopIntegrate[
Coefficient[M1, 𝜇2, 0]/(16 𝜋^2)

]
+ 𝜇Integrate[
Coefficient[M1, 𝜇2, 1]/(64 𝜋^3),
1

],
onshell

]]] /. e -> Sqrt[4 𝜋𝛼]];

There is a subtlety here that only arise for complicated matrix elements. Because the function Package-X uses for box

5.3. Example calculations in Mathematica 49

https://gitlab.com/mule-tools/qgraf

McMule, Release v0.5.1

integrals, ScalarD0IR6(), is so complicated, no native Fortran implementation exists in McMule. Instead, we are
defaulting to COLLIER [6] and should directly evaluate the finite part of the PVD function above. The same holds
true for the more complicated triangle functions. In fact, only the simple DiscB() and ScalarC0IR6() are natively
implemented without need for external libraries. For any other functions, a judgement call is necessary of whether
one should LoopRefine the finite part in the first place. In general, if an integral can be written through logarithms
and dilogs of simple arguments (resulting in real answers) or DiscB() and ScalarC0IR6(), it makes sense to do so.
Otherwise, it is often easier to directly link to COLLIER.

5.4 Coding style and best practice

A large-scale code base like McMule cannot live without some basic agreements regarding coding style and operational
best practice. These range from a (recommended but not enforced) style guide over the management of the git repository
to how to best run McMule in development scenarios. All aspects have been discussed within the McMule collaboration.

Fortran code in McMule is (mostly) written in accordance with the following style guide. If new code is added, com-
pliance would be appreciated but deviation is allowed if necessary. If in doubt, contact any member of the McMule
collaboration.

• Indentation width is two spaces. In Vim this could be implemented by adding the following to .vimrc

autocmd FileType fortran set tabstop=8 softtabstop=0 expandtab shiftwidth=2 smarttab

• Function and subroutine names are in all-upper case.

• A function body is not indented beyond its definition.

• When specifying floating point literals specify the precision when possible, i.e. 1._prec.

• Integrands should have ndim specified.

• Internal functions should be used where available.

• Masses and other kinematic parameters must be calculated in the matrix elements as local variables; using the
global parameters Mm and Me is strictly forbidden.

• These rules also hold for matrix elements.

For python code, i.e. pymule as well as the analysis code, PEP8 compliance is strongly encouraged with the exception
of E231 (Missing whitespace after ,, ;, and :), E731 (Do not assign a lambda expression, use a def) as well, in
justified cases, i.e. if required by the visual layout, E272 (Multiple spaces before keyword), and E131 (Continuation
line unaligned for hanging indent).

McMule uses a git repositories for version management. Development usually happens on feature branches that are
merged into the devel branch semi-frequently by the McMule collaboration after sufficient vetting was performed.
Finally, once a project has been finished, the devel branch gets merged into the release branch that is to be used by
McMule’s users.

In general, developers are encouraged to not commit wrong or unvetted code though this can obviously not be com-
pletely avoided in practice. To avoid uncontrollable growth of the git repository, large files movements are strongly
discouraged. This also means that matrix elements should not be completely overhauled barring unanimous agreement.
Instead, developers are encouraged to add a new matrix element file and link to that instead.

Even when running McMule for development purposes the usage of menu files is strongly encouraged because the code
will do its utmost to automatically document the run by storing the git version as well as any modification thereof. This
allows for easy and unique reconstruction of what was running. For production runs this is not optional; these must be
conducted with menu files after which the run folder must be stored with an analysis script and all data on the AFS as
well as the user file library to ensure data retention.

50 Chapter 5. Implementing new processes in McMule

Chapter 6

The FKS2 scheme

In the following we very briefly review the FKS [28, 29] and FKS2 schemes [8] though this is not meant as an introduc-
tion into these schemes. For this see [8, 23, 25]. Here, we just give a schematic overview with the basic information
required to understand the structure of the code.

The core idea of this method is to render the phase-space integration of a real matrix element finite by subtracting all
possible soft limits. The subtracted pieces are partially integrated over the phase space and combined with the virtual
matrix elements to form finite integrands.

The NLO corrections 𝜎(1) to a cross section are split into a 𝑛 particle and (𝑛+1) particle contribution and are written
as

𝜎(1) = 𝜎(1)
𝑛 (𝜉𝑐) + 𝜎

(1)
𝑛+1(𝜉𝑐) (6.1)

𝜎(1)
𝑛 (𝜉𝑐) =

∫︁
dΦ𝑑=4

𝑛

(︃
ℳ(1)

𝑛 + ℰ̂(𝜉𝑐)ℳ(0)
𝑛

)︃
=

∫︁
dΦ𝑑=4

𝑛 ℳ(1)𝑓
𝑛 (6.2)

𝜎
(1)
𝑛+1(𝜉𝑐) =

∫︁
dΦ𝑑=4

𝑛+1

(︂
1

𝜉1

)︂
𝑐

(︀
𝜉1 ℳ(0)𝑓

𝑛+1

)︀
(6.3)

In (6.3), 𝜉1 is a variable of the (𝑛+1) parton phase space dΦ𝑑=4
𝑛+1 that corresponds to the (scaled) energy of the emitted

photon. For 𝜉1 → 0 the real matrix element ℳ(0)𝑓
𝑛+1 develops a singularity. The superscripts (0) and 𝑓 indicate that

the matrix element is computed at tree level and is finite, i.e. free of explicit infrared poles 1/𝜖. In order to avoid an
implicit infrared pole upon integration, the 𝜉1 integration is modified by the factor 𝜉1(1/𝜉1)𝑐, where the distribution
(1/𝜉1)𝑐 acts on a test function 𝑓 as∫︁ 1

0

d𝜉1

(︂
1

𝜉1

)︂
𝑐

𝑓(𝜉1) ≡
∫︁ 1

0

d𝜉1
𝑓(𝜉1)− 𝑓(0)𝜃(𝜉𝑐 − 𝜉1)

𝜉1
(6.4)

Thus, for 𝜉1 < 𝜉𝑐, the integrand is modified through the subtraction of the soft limit. This renders the integration
finite. However, it also modifies the result. The missing piece of the real corrections can be trivially integrated over 𝜉1.
This results in the integrated eikonal factor ℰ̂(𝜉𝑐) times the tree-level matrix element for the 𝑛 particle process, ℳ(0)

𝑛 .
The factor ℰ̂(𝜉𝑐) has an explicit 1/𝜖 pole that cancels precisely the corresponding pole in the virtual matrix element
ℳ(1)

𝑛 . Thus, the combined integrand of (6.2) is free of explicit poles, hence denoted by ℳ(1)𝑓
𝑛 , and can be integrated

numerically over the 𝑛 particle phase space dΦ𝑑=4
𝑛 .

The parameter 𝜉𝑐 that has been introduced to split the real corrections can be chosen arbitrarily as long as

0 < 𝜉𝑐 ≤ 𝜉max = 1−
(︀∑︀

𝑖 𝑚𝑖

)︀2
𝑠

(6.5)

51

McMule, Release v0.5.1

where the sum is over all masses in the final state. The 𝜉𝑐 dependence has to cancel exactly between (6.2) and (6.3)
since at no point any approximation was made in the integration. Checking this independence is a very useful tool to
test the implementation of the method, as well as its numerical stability.

The finite matrix element ℳ(1)𝑓
𝑛 is simply the first-order expansion of the general YFS exponentiation formula for soft

singularities

𝑒ℰ̂
∞∑︁
ℓ=0

ℳ(ℓ)
𝑛 =

∞∑︁
ℓ=0

ℳ(ℓ)𝑓
𝑛 = ℳ(0)

𝑛 +
(︁
ℳ(1)

𝑛 + ℰ̂(𝜉𝑐)ℳ(0)
𝑛

)︁
+𝒪(𝛼2) (6.6)

where we exploited the implicit factor 𝛼 in ℰ̂ .

For QED with massive fermions this scheme can be extended to NNLO and, in fact beyond. The NNLO corrections are
split into three parts

𝜎(2)
𝑛 (𝜉𝑐) =

∫︁
dΦ𝑑=4

𝑛

(︂
ℳ(2)

𝑛 + ℰ̂(𝜉𝑐)ℳ(1)
𝑛 +

1

2!
ℳ(0)

𝑛 ℰ̂(𝜉𝑐)2
)︂

=

∫︁
dΦ𝑑=4

𝑛 ℳ(2)𝑓
𝑛 (6.7)

𝜎
(2)
𝑛+1(𝜉𝑐) =

∫︁
dΦ𝑑=4

𝑛+1

(︂
1

𝜉1

)︂
𝑐

(︁
𝜉1 ℳ(1)𝑓

𝑛+1(𝜉𝑐)
)︁

(6.8)

𝜎
(2)
𝑛+2(𝜉𝑐) =

∫︁
dΦ𝑑=4

𝑛+2

(︂
1

𝜉1

)︂
𝑐

(︂
1

𝜉2

)︂
𝑐

(︁
𝜉1𝜉2 ℳ(0)𝑓

𝑛+2

)︁
(6.9)

Thus we have to evaluate 𝑛 parton contributions, single-subtracted (𝑛+1) parton contributions, and double-subtracted
(𝑛 + 2) parton contributions. This structure will be mirrored in the Fortran code. The 𝜉𝑐 dependence cancels, once
all three contributions are taken into account. For this subtraction method we need the matrix elements with massive
fermions. If the two-loop amplitudes are available only for massless fermions, it is possible to use massification [7].

6.1 FKSℓ: extension to NℓLO

The pattern that has emerged in the previous cases leads to the following extension to an arbitrary order ℓ in perturbation
theory:

d𝜎(ℓ) =

ℓ∑︁
𝑗=0

d𝜎
(ℓ)
𝑛+𝑗(𝜉𝑐) (6.10)

d𝜎
(ℓ)
𝑛+𝑗(𝜉𝑐) = dΦ𝑑=4

𝑛+𝑗

1

𝑗!

(︂ 𝑗∏︁
𝑖=1

(︂
1

𝜉𝑖

)︂
𝑐

𝜉𝑖

)︂
ℳ(ℓ−𝑗)𝑓

𝑛+𝑗 (𝜉𝑐) (6.11)

The eikonal subtracted matrix elements

ℳ(ℓ)𝑓
𝑚 =

ℓ∑︁
𝑗=0

ℰ̂𝑗

𝑗!
ℳ(ℓ−𝑗)

𝑚

(with the special case ℳ(0)𝑓
𝑚 = ℳ(0)

𝑚 included) are free from 1/𝜖 poles, as indicated in (6.6). Furthermore, the
phase-space integrations are manifestly finite.

52 Chapter 6. The FKS2 scheme

Chapter 7

Glossary

7.1 Acronyms

BR
a branching ratio

EW
electroweak

FKS
the Frixione-Kunszt-Signer scheme used in McMule. See Section The FKS^2 scheme.

FSR
final state radiation

IR
infra-red

HVP
hadronic vacuum polarisation

ISR
initial state radiation

LO
leading order

LP
leading power

NLO
next-to-leading order

NLP
next-to-leading power

NNLO
next-to-next-to-leading order

NTS
next-to-soft

53

McMule, Release v0.5.1

OS
on-shell renormalisation scheme in which the masses correspond to the poles of the propagators and 𝛼 = 𝛼(𝑞2 =
0) in the Thomson limit

PCS
pseudo-collinear sinuglarities, the numerical instabilties in

ℳ(ℓ)
𝑛+1 ∝ 1

𝑞 · 𝑘
=

1

𝜉2
1

1− 𝑦𝛽

where 𝑦 is the angle between photon (𝑘) and electron (𝑞). For large velocities 𝛽 (or equivalently small masses),
this becomes almost singular as 𝑦 → 1.

PID
particle identification, the ordering of particles in the code

RNG
random number generator, used to generate pseudo-random numbers for the Monte Carlo generation. See Section
Random number generation

SHA1
secure-hasing-algorithm-1, used for hashing McMule’s source code in autoversioning

SM
the Standard Model of particle physics

VP
vacuum polarisation

7.2 Technical terms

config file
a shell file specifying, among other things, the statistics to be used

containerisation
the concept of bundling all dependecies etc. with McMule. See Sections Basics of containerisation and Basics
of containerisation

container
a container that has bundled all dependecies etc. with McMule. See Sections Basics of containerisation and
Basics of containerisation

corner region
a region of phase space where the mapping defined in Section Phase-space generation is not unique. The corner
region refers to the smaller part of this double mapping.

counter-event
the soft event that gets subtracted in FKS, cf. (4.2)

event
the hard event that does not get subtracted in FKS, cf. (4.2)

full period
a surjective RNG

generic pieces
a generic piece describes a part of the calculation such as the real or virtual corrections that themselves may be
further subdivided as is convenient.

54 Chapter 7. Glossary

McMule, Release v0.5.1

generic processes
A generic process is a prototype for the physical process such as ℓ𝑝 → ℓ𝑝 where the flavour of the lepton ℓ is left
open.

menu file
A menu file contains a list of jobs to be computed s.t. the user will only have to vary the random seed and 𝜉𝑐 by
hand as the statistical requirements are defined globally in a config file.

measurement function
A function that takes as arguments the four-momenta of all particles involved in the reaction and returns the
experimentally measured quantity.

process group
Processes are grouped into process grous if they share matrix elements such as 𝜇 → 𝜈𝜈𝑒 and 𝜇 → 𝜈𝜈𝑒𝛾 (mudec)
or 𝑒𝜇 → 𝑒𝜇 and ℓ𝑝 → ℓ𝑝 (mue).

random seed
the initial value of the RNG. In McMule this may be between 1 and 2³¹-2. See Section Random
number generation for further details.

soft cut
a value of 𝜉 below which no subtraction takes place and the integrand is set to zero

submission script
a script that is provided by pymule to run a menu file.

7.2. Technical terms 55

McMule, Release v0.5.1

56 Chapter 7. Glossary

Chapter 8

Bibliography

57

McMule, Release v0.5.1

58 Chapter 8. Bibliography

Chapter 9

Particle ID

The following table lists the which_pieces of McMule as well as the corresponding PID. For example, when calcu-
lating the process 𝜇+ → 𝑒+𝜈𝜈𝑒+𝑒−, the measurement function may receive up to seven arguments that can be mapped
to particles as follows:

FUNCTION QUANT(Q1,Q2,Q3,Q4,Q5,Q6,Q7)
real(kind=prec) :: q1(4) ! incoming muon+
real(kind=prec) :: q2(4) ! outgoing electron+
real(kind=prec) :: q3(4) ! outgoing neutrino, averaged over
real(kind=prec) :: q4(4) ! outgoing neutrino, averaged over
real(kind=prec) :: q5(4) ! outgoing electron-
real(kind=prec) :: q6(4) ! outgoing electron+
real(kind=prec) :: q7(4) ! outgoing optional photon

pol1 = (/ 0., 0., -0.85, 0. /) ! set incoming muon polarisation
...
END FUNCTION

Additionally to the particle mapping, we see that neutrinos are averaged over as indicated by
[︀
𝜈𝜇𝜈𝑒

]︀
. We can further

tell that the first initial state particle is polarised since the P-column lists a 1.

which_piece P? 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

m2enn0 1 𝜇− → 𝑒−
[︀
𝜈𝑒𝜈𝜇

]︀
m2ennF 1
m2ennFF 1
m2ennNF 1
m2ennR 1 𝜇− → 𝑒−

[︀
𝜈𝑒𝜈𝜇

]︀
𝛾

m2ennRF 1
m2enng0 1
m2enngV 1
m2enngC 1
m2ennRR 1 𝜇− → 𝑒−

[︀
𝜈𝑒𝜈𝜇

]︀
𝛾 𝛾

m2enngR 1
m2ennee0 1 𝜇− → 𝑒−

[︀
𝜈𝑒𝜈𝜏

]︀
𝑒+ 𝑒−

m2enneeV 1
m2enneeC 1 𝜇− → 𝑒−

[︀
𝜈𝜇𝜈𝑒

]︀
𝑒+ 𝑒−

m2enneeA 1 𝜇− → 𝑒−
[︀
𝜈𝑒𝜈𝜏

]︀
𝑒+ 𝑒−

continues on next page

59

McMule, Release v0.5.1

Table 9.1 – continued from previous page
which_piece P? 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

m2enneeR 1 𝜇+ → 𝑒+
[︀
𝜈𝜇𝜈𝑒

]︀
𝑒− 𝑒+ 𝛾

t2mnnee0 1 𝜏− → 𝜇− [︀
𝜈𝑒𝜈𝜏

]︀
𝑒+ 𝑒−

t2mnneeV 1
t2mnneeC 1 𝜏− → 𝜇− [︀

𝜈𝜏𝜈𝜇
]︀

𝑒+ 𝑒−

t2mnneeA 1 𝜏− → 𝜇− [︀
𝜈𝑒𝜈𝜏

]︀
𝑒+ 𝑒−

t2mnneeR 1 𝜏+ → 𝜇+
[︀
𝜈𝜏𝜈𝑒

]︀
𝑒− 𝑒+ 𝛾

m2ej0 1 𝜇− → 𝑒− 𝑗
m2ejF 1
m2ejR 1 𝜇− → 𝑒− 𝑗 𝛾
m2ejg0 1
em2em0 0 𝑒− 𝜇− → 𝑒− 𝜇−

em2emV 0
em2emC 0
em2emFEE 0
em2emFEM 0
em2emFMM 0
em2emA 0
em2emFFEEEE 0
em2emFFMMMM 0
em2emFFMIXDz 0
em2emAA 0
em2emAFEE 0
em2emAFEM 0
em2emAFMM 0
em2emNFEE 0
em2emNFEM 0
em2emNFMM 0
em2emREE 0 𝑒− 𝜇− → 𝑒− 𝜇− 𝛾
em2emREM 0
em2emRMM 0
em2emRFEEEE 0
em2emRFMIXD 0
em2emRFMMMM 0
em2emAREE 0
em2emAREM 0
em2emARMM 0
em2emRREEEE 0 𝑒− 𝜇− → 𝑒− 𝜇− 𝛾 𝛾
em2emRRMIXD 0
em2emRRMMMM 0
emZem0X 0 𝑒− 𝜇+ → 𝑒− 𝜇+

emZemFX 0
emZemRX 0
mp2mp0 0 𝜇− 𝑝 → 𝜇− 𝑝
mp2mpF 0
mp2mpA 0
mp2mpFF 0
mp2mpAA 0
mp2mpAF 0
mp2mpNF 0
mp2mpR 0 𝜇− 𝑝 → 𝜇− 𝑝 𝛾

continues on next page

60 Chapter 9. Particle ID

McMule, Release v0.5.1

Table 9.1 – continued from previous page
which_piece P? 𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7

mp2mpRF 0
mp2mpAR 0
mp2mpRR 0 𝜇− 𝑝 → 𝜇− 𝑝 𝛾 𝛾
ee2mm0 2 𝑒− 𝑒+ → 𝜇− 𝜇+

ee2mmF 0
ee2mmFFEEEE 0
ee2mmR 0 𝑒− 𝑒+ → 𝜇− 𝜇+ 𝛾
ee2mmRFEEEE 0
ee2mmRREEEE 0 𝑒− 𝑒+ → 𝜇− 𝜇+ 𝛾 𝛾
ee2mmA 0 𝑒− 𝑒+ → 𝜇− 𝜇+

ee2mmAA 2
ee2mmNFEE 2
ee2mmAFEE 0
ee2mmAREE 0 𝑒− 𝑒+ → 𝜇− 𝜇+ 𝛾
eeZmm0 2 𝑒− 𝑒+ → 𝜇− 𝜇+

eeZmm0X 2
eeZmmFX 0
eeZmmAX 0
eeZmmRX 0 𝑒− 𝑒+ → 𝜇− 𝜇+ 𝛾
ee2ee0 0 𝑒− 𝑒− → 𝑒− 𝑒−

ee2eeA 0
ee2eeF 0
ee2eeFF 0
ee2eeAA 0
ee2eeAF 0
ee2eeNF 0
ee2eeR 0 𝑒− 𝑒− → 𝑒− 𝑒− 𝛾
ee2eeRF 0
ee2eeAR 0
ee2eeRR 0 𝑒− 𝑒− → 𝑒− 𝑒− 𝛾 𝛾
eb2eb0 0 𝑒− 𝑒+ → 𝑒− 𝑒+

eb2ebF 0
eb2ebFF 0
eb2ebR 0 𝑒− 𝑒+ → 𝑒− 𝑒+ 𝛾
eb2ebRF 0
eb2ebRR 0 𝑒− 𝑒+ → 𝑒− 𝑒+ 𝛾 𝛾
ee2nn0 0 𝑒− 𝑒+ → 𝜈 𝜈
ee2nnF 0
ee2nnS 0
ee2nnSS 0
ee2nnCC 0
ee2nnR 0 𝑒− 𝑒+ → 𝜈 𝜈 𝛾
ee2nnRF 0

61

McMule, Release v0.5.1

62 Chapter 9. Particle ID

Chapter 10

Available processes and which_piece

When running McMule, we recommend using the following which_piece

63

McMule, Release v0.5.1

Table 10.1: which_piece to use for different physics processes

Pro-
cess

Or-
der

𝑛-particle (𝑛+ 1)-particle (𝑛+ 2)-particle

𝜇 →
𝑒𝜈𝜈

LO m2enn0
NLO m2ennF m2ennR
NNLOm2ennFF, m2ennNF m2ennRF m2ennRR

𝜇 →
𝑒𝜈𝜈𝛾

LO m2enng0
NLO m2enngF m2enngR

𝜇 →
𝑒𝜈𝜈𝑒𝑒

LO m2ennee0
NLO m2enneeV, m2enneeC,

m2enneeA,
m2enneeR

𝜇 →
𝑒𝐽

LO m2ej0
NLO m2ejF m2ejR

𝜇 →
𝑒𝐽𝛾

LO m2ejg0

𝑒𝜇 →
𝑒𝜇

LO em2em0
NLO em2emFEE, em2emFEM,

em2emFMM, em2emA
em2emREE15, em2emREE35,
em2emREM, em2emRMM

el.
NNLO

em2emFFEEEE, em2emAA,
em2emAFEE, em2emNFEE

em2emRFEEEE15,
em2emRFEEEE35,
em2emRFEEEEco, em2emAREE15,
em2emAREE35

em2emRREEEE1516,
em2emRREEEE3536,
em2emRREEEEc

full
NNLO

em2emFFMIXDz,
em2emFFMMMM, em2emAFEM,
em2emAFMM, em2emNFEM,
em2emNFMM

em2emRFMIXD15,
em2emRFMIXD35,
em2emRFMIXDco, em2emRFMMMM,
em2emAREM, em2emARMM

em2emRRMIXD1516,
em2emRRMIXD3536,
em2emRRMIXDc,
em2emRRMMMM

𝜇𝑝 →
𝜇𝑝

LO mp2mp0
NLO mp2mpF, mp2mpA mp2mpR15, mp2mpR35
NNLOmp2mpFF, mp2mpAA, mp2mpAF,

mp2mpNF
mp2mpRF15, mp2mpRF35,
mp2mpRFco, mp2mpAR15,
mp2mpAR35

mp2mpRR1516,
mp2mpRR3536,
mp2mpRRco

𝑒𝑒 →
𝜇𝜇

LO ee2mm0
NLO ee2mmF, ee2mmA ee2mmR
el.
NNLO

ee2mmFFEEEE, ee2mmAA,
ee2mmAFEE, ee2mmNFEE

ee2mmRFEEEE, ee2mmAREE ee2mmRREEEE,

LO eeZmm0
EW
NLO

eeZmmFX, eeZmmAX eeZmmRX

𝑒−𝑒− →
𝑒−𝑒−

LO ee2ee0
NLO ee2eeF, ee2eeA ee2eeR125, ee2eeR345
NNLOee2eeFF, ee2eeAF, ee2eeAA,

ee2eeNF
ee2eeRF125, ee2eeRF345,
ee2eeAF125, ee2eeAR135

ee2eeRR15162526,
ee2eeRR35364546

𝑒−𝑒+ →
𝑒−𝑒+

LO eb2eb0
NLO eb2ebF, eb2ebA eb2ebR125, eb2ebR35, eb2ebR45
NNLOeb2ebFF, eb2ebAF, eb2ebAA,

eb2ebNF
eb2ebRF125, eb2ebRF35,
eb2ebRF45, eb2ebAR125,
eb2ebAR35, eb2ebAR45

eb2ebRR15162526,
eb2ebRR3536,
eb2ebRR4546

We also show a list of all available which_piece in Figure 10.1.

Figure 10.1: The which_piece implemented in McMule

64 Chapter 10. Available processes and which_piece

Chapter 11

Fortran reference guide

McMule’s Fortran code has hundreds of functions and subroutine and we will not document all of them here. However,
we will list the user-facing function that are intended to help construct user files.

11.1 User-modifiable parameters

The following parameters may be modified by the user though it might become necessary to completely recompile
McMule ones done.

type real (kind=prec) [fixed]
The real number type used in McMule. This cannot be changed at runtime by the user but should be used for all
interactions with the code. It usually refers to double precision

real(kind=prec) musq

The renormalisation scale 𝜇2. This variable needs to be set by the user, otherwise McMule will fail.

integer nel

Set to 1 if electron VP loops are to be included, set to 0 otherwise. More options may be added later

integer nmu

Set to 1 if muon VP loops are to be included, set to 0 otherwise. More options may be added later

integer ntau

Set to 1 if tau VP loops are to be included, set to 0 otherwise. More options may be added later

integer nhad

Set to 1 if HVP loops are to be included, set to 0 otherwise. More options may be added later

real (kind=prec) pol1(4)
The polarisation of the first polarised particle

real (kind=prec) pol2(4)
The polarisation of the second polarised particle

function real(kind=prec) sachs_gel(q2)
The electric Sachs form factor of the proton. In the dipole approximation this is

𝐺𝑒(𝑄
2) =

1

(1 +𝑄2/Λ)2

65

McMule, Release v0.5.1

Parameters
q2 [real(kind=prec)] :: the value of 𝑄2

function real(kind=prec) sachs_gmag(q2)
The magnetic Sachs form factor of the proton. In the dipole approximation this is

𝐺𝑚(𝑄2) =
𝜅

(1 +𝑄2/Λ)2

Parameters
q2 [real(kind=prec)] :: the value of 𝑄2

subroutine init_flavour(flavour)
The definitions of the flavour. Users may edit this to add new experiments etc.

real(kind=prec) GF

The Fermi constant. For predominantly historic reasons, this is set to 1._prec.

real(kind=prec) alpha

The fine-structure constant in the OS scheme. For predominantly historic reasons, this is set to 1._prec.

real(kind=prec) sw2

The weak mixing angle sin(𝜃𝑊)2. This can be changed by the user at runtime to modify the EW scheme that is
used.

real(kind=prec) Mel

The numerical value of the electron mass in MeV, irregardless of the flavour

real(kind=prec) Mmu

The numerical value of the muon mass in MeV, irregardless of the flavour

real(kind=prec) Mtau

The numerical value of the tau mass in MeV, irregardless of the flavour

real(kind=prec) Mproton

The numerical value of the proton mass in MeV, irregardless of the flavour

real(kind=prec) MZ

The numerical value of the Z boson mass in MeV

real(kind=prec) Mm

The actual value of the m particle, usually the muon mass but if flavour is eg. tau-e the tau mass

real(kind=prec) Me

The actual value of the e particle, usually the electron mass but if flavour is eg. tau-mu the muon mass

real(kind=prec) Mt

The actual value of the t particle, usually the tau mass

real(kind=prec) scms

The numerical value of the centre-of-mass energy

real(kind=prec) lambda

The dipole coefficient in the Sachs form factors of the proton in MeV:sup:2

real(kind=prec) kappa

The magnetic moment of the proton in Sachs form factors

66 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

11.2 Technical parameters

The following parameters should not be modified by the user unless especially advised to do so

character which_piece(25)

The piece being integrated, cf. Section Available processes and which_piece

character flavour(15)

The flavour configuration being used

real(kind=prec) softcut

The value of 𝜉 below which the integrand is set to zero without subtraction

real(kind=prec) colcut

The value of cos 𝜃 below which the integrand is set to zero

real(kind=prec) sSwitch

The value of 𝜉 below which the matrix element is approximated at LP. This is only available for some matrix
elements

real(kind=prec) ntsSwitch

The value of 𝜉 below which the matrix element is approximated at NLP. This is only available for some matrix
elements

11.3 User-facing functions

The following function are available for the user to construct observables. Momenta are of the form (/ px, py, pz,
E /).

11.3.1 Scalar quantities

function real(kind=prec) s(p1, p2)
The scalar product 2𝑝1 · 𝑝2

Parameters

• p1 (4) [real(kind=prec)] :: the first momentum 𝑝1

• p2 (4) [real(kind=prec)] :: the second momentum 𝑝2

function real(kind=prec) sq(p)
The Lorentz square 𝑝2

Parameters
p (4) [real(kind=prec)] :: the momentum 𝑝

function real(kind=prec) asymtensor(p1, p2, p3, p4)
The total asymmetric tensor 𝜀𝜇𝜈𝜌𝜎𝑝𝜇1𝑝𝜈2𝑝

𝜌
3𝑝

𝜎
4

Parameters

• p1 (4) [real(kind=prec)] :: the momentum 𝑝1

• p2 (4) [real(kind=prec)] :: the momentum 𝑝2

• p3 (4) [real(kind=prec)] :: the momentum 𝑝3

11.2. Technical parameters 67

McMule, Release v0.5.1

• p4 (4) [real(kind=prec)] :: the momentum 𝑝4

function real(kind=prec) eta(p)
The pseudorapidity w.r.t. the 𝑧 axis

𝜂 =
1

2
log

|𝑝|+ 𝑝𝑧
|𝑝| − 𝑝𝑧

Parameters
p (4) [real(kind=prec)] :: the momentum 𝑝

function real(kind=prec) rap(p)
The rapidity w.r.t. the 𝑧 axis

𝑦 =
1

2
log

𝐸 + 𝑝𝑧
𝐸 − 𝑝𝑧

Parameters
p (4) [real(kind=prec)] :: the momentum 𝑝

function real(kind=prec) pt(p)
The transverse momentum w.r.t. the 𝑧 axis

𝑝𝑇 =
√︀

𝑝2𝑥 + 𝑝2𝑧

Parameters
p (4) [real(kind=prec)] :: the momentum 𝑝

function real(kind=prec) absvec(p)
The length of the three-vector part |𝑝

Parameters
p (4) [real(kind=prec)] :: the momentum 𝑝

function real(kind=prec) phi(p)
The azimuthal angle of 𝑝, −𝜋 < 𝜑 < 𝜋

Parameters
p (4) [real(kind=prec)] :: the momentum 𝑝

Note: This may return 100𝜋 if the calculation fails.

function real(kind=prec) rij(p1, p2)
The jet distance 𝑅12 between the two momenta 𝑝1 and 𝑝2, normalised by 𝐷res = 0.7

𝑅12 =
∆𝑦212 +∆𝜑2

12

𝐷2
res

Parameters

• p1 (4) [real(kind=prec)] :: the first momentum 𝑝1

• p2 (4) [real(kind=prec)] :: the second momentum 𝑝2

function real(kind=prec) cos_th(p1, p2)
The cosine of the angle between the two momenta 𝑝1 and 𝑝2

cos 𝜃12 =
𝑝1 · 𝑝2
|𝑝1| |𝑝2|

68 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

Parameters

• p1 (4) [real(kind=prec)] :: the first momentum 𝑝1

• p2 (4) [real(kind=prec)] :: the second momentum 𝑝2

Note: This will return 0 if the computation fails

11.3.2 Transformations

function boost_back(rec, mo)
boosts the momentum mo from the frame where rec is at rest to the frame where rec is specified, i.e.

boost_back(rec, (/ 0., 0., 0., sqrt(sq(rec)) /)) = rec

This function can be viewed as the inversion of boost_rf().

Parameters

• rec (4) [real(kind=prec)] :: the system to boost into

• mo (4) [real(kind=prec)] :: the momentum to boost

Return
boost_back (4) [real(kind=prec)] :: the boosted momentum

function boost_rf(rec, mo)
boosts mo to (non-unique) rest frame of rec, i.e.

boost_rf(rec, rec) = (/ 0., 0., 0., sqrt(sq(rec)) /)

This function can be viewed as the inversion of boost_back().

Parameters

• rec (4) [real(kind=prec)] :: the system to boost into

• mo (4) [real(kind=prec)] :: the momentum to boost

Return
boost_back (4) [real(kind=prec)] :: the boosted momentum

function euler_mat(a, b, c)
gives the Euler rotation matrix formed by rotation by 𝛼 around the current 𝑧 axis, then by 𝛽 around the current
𝑦 axis, and the by 𝛾 around the current 𝑧 axis.⎛⎜⎜⎝

𝑐𝛼𝑐𝛽𝑐𝛾 − 𝑠𝛼𝑠𝛾 −𝑐𝛼𝑐𝛽𝑠𝛾 − 𝑐𝛾𝑠𝛼 𝑐𝛼𝑠𝛽 0
𝑐𝛽𝑐𝛾𝑠𝛼 + 𝑐𝛼𝑠𝛾 𝑐𝛼𝑐𝛾 − 𝑐𝛽𝑠𝛼𝑠𝛾 𝑠𝛼𝑠𝛽 0

−𝑐𝛾𝑠𝛽 𝑠𝛽𝑠𝛾 𝑐𝛽 0
0 0 0 1

⎞⎟⎟⎠
Parameters

• a [real(kind=prec)] :: the angle 𝛼

• b [real(kind=prec)] :: the angle 𝛽

• c [real(kind=prec)] :: the angle 𝛾

11.3. User-facing functions 69

McMule, Release v0.5.1

Return
euler_mat (4,4) [real(kind=prec)] :: the 4× 4 Euler matrix

11.4 The user file

11.4.1 Mandatory functions

The user must implement the following functions in the user file

nr_q [integer,parameter= n]
The number of distributions the user intends to calculate

nr_bins [integer,parameter= n]
The number of bins in the distributions the user intends to calculate

min_val (nr_q) [real(kind=prec)]
The lower bounds of the distributions

max_val (nr_q) [real(kind=prec)]
The upper bounds of the distributions

userdim [integer]
The number of integrations the user wishes to carry out to account eg. for beam effects

pass_cut (nr_q) [logical]
This controls whether the event is acceptable. If at least one entry of this array is .true. the event will be
calculated and added to the cross section. If individual elements are .false., this event will not be added to the
corresponding histogram.

Note: Even though it is possible to calculate multiple closely related cuts simultaneously, this can harm the
speed of convergence as the VEGAS algorithm optimises for the cross section and not for the distributions.

userweight [real(kind=prec)]
The weight the user wishes to attach to a given event

names (nr_q) [character(len=namesLen)]
The names of the distributions the user wishes the calculate

filenamesuffix [character(len=filenamesuffixLen)]
The observable-specific suffix to the vegas file

subroutine fix_mu()

The user needs to choose the renormalisation scale 𝜇2 by writing to the variable musq. This can be done on a
per-event basis.

A common example would be

SUBROUTINE FIX_MU
musq = Mm**2
END SUBROUTINE FIX_MU

70 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

subroutine inituser()

This is called without arguments once as soon as McMule starts and has read all other configuration, meaning that
it can access which_piece and flavour. It may be used to read any further information (like cut configuration
etc). The user does not have to print hashes – this is already taken care of – but is very much invited to include
information of what it is they are doing.

If the user is using the cut channel of the menu, they may need to set the filenamesuffix variable which is
appended to the name of the VEGAS file.

Example for reading a cut:

SUBROUTINE INITUSER
integer cut
read*,cut
write(filenamesuffix,'(I2)') cut
END SUBROUTINE INITUSER

with a global variable cut

function quant(q1, q2, q3, q4, q5, q6, q7)
The measurement function the user wishes to calculate. This needs to at least set pass_cut but also returns the
values of the observables that are to be computed. It usually also calls fix_mu() to fix the renormalisation scale
though this can be done elsewhere. If the user wishes to consider polarised scattering, pol1 and pol2 need to
be set.

A minimal example that accepts every event and does not calculate a distribution would be

FUNCTION QUANT(q1,q2,q3,q4,q5,q6,q7)
real (kind=prec), intent(in) :: q1(4),q2(4),q3(4),q4(4),q5(4),q6(4),q7(4)
real (kind=prec) :: quant(nr_q)
!! ==== keep the line below in any case ==== !!
call fix_mu
pol1 = 0.
pass_cut = .true.
END FUNCTION QUANT

Parameters
qi (4) [real(kind=prec)] :: the momenta

Return
quant (nr_q) [real(kind=prec)] :: the observables that are to be histogrammed

subroutine userevent(x, ndim)

The user may use this routine in combination with userweight to integrate over further parameters, i.e. to
calculate

𝜎 ∼
∫︁ 1

0

d𝑥1

∫︁ 1

0

d𝑥2 · · ·
∫︁ 1

0

d𝑥𝑚 ×
∫︁

dΦ |ℳ𝑛|2 𝑓(𝑥1, 𝑥2, · · · , 𝑥𝑛; 𝑝1, · · · , 𝑝𝑛)

with a generalised measurement function 𝑓 . A minimal example that does not include extra intgration is

SUBROUTINE USEREVENT(X, NDIM)
integer :: ndim
real(kind=prec) :: x(ndim)
userweight = 1.
END SUBROUTINE USEREVENT

11.4. The user file 71

McMule, Release v0.5.1

Parameters

• x (ndim) [real(kind=prec)] :: the values of the integration

• ndim [integer] :: the dimension of x, should equal userdim .

11.4.2 Tweaking parameters

In rare cases it may be necessary to tweak some parameters.

integer namesLen

The maximally allowed length of the histogram names.

integer filenamesuffixLen

The maximally allowed length of the observable name as specified in filenamesuffix.

integer bin_kind

The binning mechanism being used, 0 for d𝜎/d𝑄 and 1 for 𝑄d𝜎/d𝑄.

Warning: Note that the latter is not properly tested and should only be used with great care

11.5 Technical routines

The following types, variables, and routines are unlikely to be needed by the typical user and are instead aimed at
McMule’s developers.

11.5.1 The particle framework

integer maxparticles

The maximal number of particles allowed

type mlm

Type fields

• % momentum (4) [real(kind=prec)] :: the momentum

type particle

Type fields

• % momentum (4) [real(kind=prec)] :: the momentum

• % effcharge [integer] :: the effective charge, corresponding to the +charge for incoming
and -charge for outgoing particles.

• % charge [integer] :: the actual charge

• % incoming [logical] :: .true. for incoming particles

• % lepcharge [integer] :: the lepton family (1 for electrons, 2 for muons, 3 for taus), defaults
to zero

72 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

type particles

Type fields

• % vec (maxparticles) [type(particle)] :: the constituent partciles

• % n [integer] :: the number of particles actually used

• % combo [character(len=1)] :: the flavour combination used, allowed values are * (any
combination), x (only mixed), e (only electronic), m (only muonic), t (only tauonic)

function make_mlm(qq)
Construct a mlm , i.e. a massless momentum

Parameters
qq (4) [real(kind=prec),in] :: the momentum

function part(qq, charge, inc[, lepcharge])
Construct a particle.

Parameters

• qq (4) [real(kind=prec),in] :: the momentum

• charge [integer,in] :: the charge of the particle

• inc [integer,in] :: +1 for incoming, -1 for outgoing

Options
lepcharge [integer,1] :: the lepton family number

function parts(ps[, combo])
Construct particles from a list of particles

Parameters
ps (*) [type(particle),in] :: a list of particle

Options
combo [character(len=1)] :: the flavour combination used, allowed values are * (any combina-
tion), x (only mixed), e (only electronic), m (only muonic), t (only tauonic)

function eik()

An interface to construct the eikonal factor. eik can be called with

• (kg, pp), using the type particles. The optional flavour combination combo restricts the emission to
the desired set of fermion lines. If combo is set to x, all contributions but the self-eikonal are included.

• ({q1,k1}, kg, {q2,k2}), with an explicit call to the momenta of the {massive, massless} emitter, before
(1) and after (2) the emission.

Parameters

• pp [type(particles),in] :: the fermions involved in the photon emission

• qi (4) [real(kind=prec),in] :: the momenta of the massive emitter

• ki [type(mlm),in] :: the momenta of the massless emitter

• kg [type(mlm),in] :: the momentum of the photon

Return
eik :: the eikonal factor

11.5. Technical routines 73

McMule, Release v0.5.1

function ieik()

An interface to construct the integrated eikonal factor [28]. ieik can be called with

• (xicut, epcmf, pp[, pole]), using the type particles. The optional flavour combination combo
restricts the emission to the desired set of fermion lines. If combo is set to x, all contributions but the
self-eikonal are included.

• (xicut, epcmf, q1, q2[, pole]), with an explicit call to the momenta of the massive emitter, before
(1) and after (2) the emission.

Parameters

• xicut [real(kind=prec),in] :: 𝜉𝑐 (cf. Section Running at NLO and beyond)

• epcmf [real(kind=prec),in] :: square root of scms

• pp [type(particles),in] :: the fermions involved in the photon emission

• qi (4) [real(kind=prec),in] :: the momenta of the massive emitter

Options
pole [real(kind=prec),out] :: the singular part of the integrated eikonal, as a coefficient of 1/𝜖

Return
ieik :: the finite part of the integrated eikonal factor

function ntssoft(pp, kk, pole)
The (universal) soft contribution to the LBK theorem at 1 loop [9], i.e. the NTS soft function. The optional
flavour combination for the particles pp restricts the emission to the desired set of fermion lines.1

Parameters

• pp [type(particles),in] :: the fermions involved in the photon emission

• kk (4) [real(kind=prec),in] :: the momentum of the photon

Options
pole [real(kind=prec),out] :: the singular part of the NTS soft function, as a coefficient of 1/𝜖

Return
ieik :: the finite part of the NTS soft function

11.5.2 Matrix element interface

function partInterface(q1, q2, q3, q4, q5, q6, q7)
an abstract interface to construct particles for a given process.

Parameters
qi (4) [real(kind=prec)] :: the momenta

Return
partInterface [particles] :: the constructed particle string

1 The user is allowed to further split mixed contributions at NNLO, i.e. contributions with emissions connecting different fermion lines. This is
achieved via the optional parameter mx of the auxiliary function combonts. The latter sets the desired flavour combination for ntssoft, and mx=1
allows to choose among different mixed contributions. For example, for ℓ1ℓ2 → ℓ1ℓ2 scattering, if a formal charge 𝑄1(2) is assigned for each
photon emission from ℓ1(2), ntssoft will be able to distinguish among the contributions labelled by 𝑄5

1 𝑄
3
2, 𝑄4

1 𝑄
4
2 and 𝑄3

1 𝑄
5
2.

74 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

11.5.3 Package-X function

Note: This section needs to be completed, link to issue

function DiscB()

function DiscB_cplx()

function ScalarC0IR6()

function ScalarC0IR6_cplx()

function ScalarC0()

function ScalarC0_cplx()

function ScalarD0IR16()

function ScalarD0IR16_cplx()

11.5.4 VP functions

Note: This section needs to be completed, link to issue

11.5.5 Phase spaces

McMule has implemented a number of phase routines that map from the hypercube to the physical momenta. Here is
a list of currently used ones

subroutine PSD3(ra, q1, m1, q2, m2, q3, m3, weight)
Generic phase space routine for 1 → 2 decays

Parameters

• ra (2) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD4(ra, q1, m1, q2, m2, q3, m3, q4, m4, weight)
Generic phase space routine for 1 → 3 decays

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

11.5. Technical routines 75

https://gitlab.com/mule-tools/manual/-/issues/2
https://gitlab.com/mule-tools/manual/-/issues/1

McMule, Release v0.5.1

subroutine PSD4_FKS(ra, q1, m1, q2, m2, q3, m3, q4, weight)
FKS phase space routine for 1 → 3 decays, requires 𝑚4 = 0. Tuned for ∢(𝑝2, 𝑞4) and 𝐸4

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD5(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, weight)
Generic phase space routine for 1 → 4 decays

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD5_25(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, weight)
Phase space routine for 1 → 4 decays, tuned for ∢(𝑝2, 𝑞5) and 𝐸5, collinear limit is ra(2) -> 0

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD5_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
FKS phase space routine for 1 → 4 decays, requires 𝑚5 = 0. Tuned for ∢(𝑝2, 𝑞5) and 𝐸5

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD6(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, m6, weight)
Generic phase space routine for 1 → 5 decays

Parameters

• ra (11) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

76 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

subroutine PSD6_23_24_34(ra, q1, m1, q2, m2, q5, m5, q6, m6, q3, m3, q4, m4, weight)
Phase space routine for 1 → 5 decays with FKS-ish tuning. This is designed for the decay 𝜇+ → 𝑒+𝜈𝜈𝑒+𝑒−.
q2 should be the unique particle (electron) and q3 and q4 are the identical particles (postirons):

_/ q
/| 2

---<---*~~~~~~~~~~*
| |
^ ^ q
| q | 3

4

The ‘spectator’ neutrinos are q5 and q6. Start by generating p2 and p3 at an angle * = arccos(y2):

^ p2
|||
|||

p3 __|||
--__ / |||

--__/ *|||
--__|||

|||

Generate p4 at an angle * = arccos(y3) and rotating by an angle phi w.r.t. to p3:

||| / p4
--|||-- /
-_ ||| _-/

p3 --___-- /
--__ |||__/

--__ |||*/
--__|||/

|||

Parameters

• ra (11) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD6_23_24_34_E56(ra, q1, m1, q2, m2, q5, m5, q6, m6, q3, m3, q4, m4, weight)
Phase space routine for 1 → 5 decays with FKS-ish tuning, similar to PSD6_23_24_34() but with special tuning
on the 𝐸5 + 𝐸6 tail.

Parameters

• ra (11) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

11.5. Technical routines 77

McMule, Release v0.5.1

subroutine PSD6_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, weight)
FKS phase space routine for 1 → 5 decays, requires 𝑚6 = 0. Tuned for ∢(𝑝2, 𝑞6) and 𝐸6

Parameters

• ra (11) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD6_25_26_m50_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, weight)
FKS phase space routine for 1 → 5 decays, requires 𝑚5 = 𝑚6 = 0. Tuned for ∢(𝑝2, 𝑞5,6) and 𝐸5,6

Parameters

• ra (11) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD6_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
Double-FKS phase space routine for 1 → 5 decays, requires 𝑚5 = 𝑚6 = 0. Tuned for ∢(𝑝2, 𝑞5,6) and 𝐸5,6

Parameters

• ra (11) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD7(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, m6, q7, m7, weight)
Generic phase space routine for 1 → 6 decays

Parameters

• ra (14) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD7_27_37_47_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, m6, q7, weight)
FKS phase space routine for 1 → 6 decays, tuned for ∢(𝑝2,3,4, 𝑞7) and 𝐸7

Parameters

• ra (14) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

78 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

subroutine PSD7_27_37_47_E56_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, m6, q7, weight)
FKS phase space routine for 1 → 6 decays, tuned for ∢(𝑝2,3,4, 𝑞7) and 𝐸7 and tuned for the 𝐸5 + 𝐸6 tail

Parameters

• ra (14) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX2(ra, q1, m1, q2, m2, q3, m3, q4, m4, weight)
Generic phase space routine for 2 → 2 cross sections

Parameters

• ra (2) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
FKS phase space routine for 2 → 3 cross sections, requires 𝑚5 = 0. Tuned for ISR and not FSR

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_35_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight[, sol])
FKS phase space routine for 2 → 3 cross sections, requires 𝑚5 = 0. Tuned for ∢(𝑞3, 𝑞5) and 𝐸5

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

Options
sol [integer,in] :: which solution to pick

subroutine PSX4(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, m6, weight)
Generic phase space routine for 2 → 4 cross sections

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

11.5. Technical routines 79

McMule, Release v0.5.1

subroutine PSX4_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
Double-FKS phase space routine for 2 → 4 cross sections, requires 𝑚5 = 𝑚6 = 0. Tuned for ISR and not
:term`FSR`

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_35_36_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight[, sol])
Double-FKS phase space routine for 2 → 4 cross sections, requires 𝑚5 = 𝑚6 = 0. Tuned for ∢(𝑞3, 𝑞5,6) and
𝐸5,6

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

Options
sol [integer,in] :: which solution to pick

subroutine PSD6_P_25_26_m50_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, weight)
FKS phase space routine for 1 → 5 decays, requires 𝑚5 = 𝑚6 = 0. Tuned for ∢(𝑝2, 𝑞5,6) and 𝐸5,6 Partioning
of PSD6_25_26_m50_FKS() with 𝑠26 < 𝑠25.

Parameters

• ra (11) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD6_26_2x5(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, m6, weight)
Phase space routine for 1 → 5 decays with FKS-ish tuning. Modification of PSD6_23_24_34() with 2 ↔ 5.
This is designed for the decay 𝜇+ → 𝑒+𝜈𝜈𝑒+𝑒−.

Parameters

• ra (11) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSD7_27_37_47_2x5_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, m5, q6, m6, q7, weight)
FKS phase space routine for 1 → 6 decays, tuned for ∢(𝑝2,3,4, 𝑞7) and 𝐸7 Modification of
PSD7_27_37_47_FKS() with 2 ↔ 5.

Parameters

• ra (14) [real(kind=prec),in] :: the random numbers

80 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_P_15_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
FKS phase space routine for 2 → 3 cross sections, requires 𝑚5 = 0. Tuned for ISR and not FSR. Partioning of
PSX3_FKS() with 𝑠15 < 𝑠35.

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_P13_35_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
FKS phase space routine for 2 → 3 cross sections, requires 𝑚5 = 0. Tuned for ∢(𝑞3, 𝑞5) and 𝐸5 Partioning of
PSX3_35_FKS() with 𝑠15 > 𝑠35.

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_coP13_35_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
The corner piece to PSX3_P13_35_FKS()

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_P_15_25_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
FKS phase space routine for 2 → 3 cross sections, requires 𝑚5 = 0. Tuned for ISR and not FSR. Partioning of
PSX3_FKS() with min

(︀
𝑠15, 𝑠25

)︀
< min

(︀
𝑠35, 𝑠45

)︀
.

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_P_35_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
FKS phase space routine for 2 → 3 cross sections, requires 𝑚5 = 0. Tuned for ∢(𝑞3, 𝑞5) and 𝐸5 Partioning of
PSX3_35_FKS() with 𝑠35 < min

(︀
𝑠15, 𝑠25, 𝑠45

)︀
.

Parameters

11.5. Technical routines 81

McMule, Release v0.5.1

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_P_45_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
FKS phase space routine for 2 → 3 cross sections, requires 𝑚5 = 0. Tuned for ∢(𝑞3, 𝑞5) and 𝐸5 Partioning of
PSX3_35_FKS() with 𝑠45 < min

(︀
𝑠15, 𝑠25, 𝑠35

)︀
and 3 ↔ 4

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_coP_35_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
The corner piece to PSX3_P_35_FKS()

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX3_coP_45_FKS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, weight)
The corner piece to PSX3_P_45_FKS()

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_P_15_16_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
Double-FKS phase space routine for 2 → 4 cross sections, requires 𝑚5 = 𝑚6 = 0. Tuned for ISR and not
:term`FSR` Partioning of PSX4_FKSS() with min

(︀
𝑠15, 𝑠16

)︀
< min

(︀
𝑠35, 𝑠36

)︀
.

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_P_35_36_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
Double-FKS phase space routine for 2 → 4 cross sections, requires 𝑚5 = 𝑚6 = 0. Tuned for ∢(𝑞3, 𝑞5,6) and
𝐸5,6 Partioning of PSX4_35_36_FKSS() with min

(︀
𝑠15, 𝑠36

)︀
< min

(︀
𝑠15, 𝑠25, 𝑠45, 𝑠16, 𝑠26, 𝑠46

)︀
.

Parameters

82 Chapter 11. Fortran reference guide

McMule, Release v0.5.1

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_coP_35_36_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
The corner piece to PSX4_P_35_36_FKSS()

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_P13_35_36_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
Double-FKS phase space routine for 2 → 4 cross sections, requires 𝑚5 = 𝑚6 = 0. Tuned for ∢(𝑞3, 𝑞5,6) and
𝐸5,6 Partioning of PSX4_35_36_FKSS() with min

(︀
𝑠15, 𝑠16

)︀
> min

(︀
𝑠35, 𝑠36

)︀
.

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_coP13_35_36_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
The corner piece to PSX4_P13_35_36_FKSS()

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_P_15_16_25_26_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
Double-FKS phase space routine for 2 → 4 cross sections, requires 𝑚5 = 𝑚6 = 0. Tuned for ISR and not
:term`FSR` Partioning of PSX4_FKSS() with min

(︀
𝑠15, 𝑠16, 𝑠25, 𝑠26

)︀
< min

(︀
𝑠35, 𝑠36, 𝑠54, 𝑠46

)︀
.

Parameters

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_P_45_46_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
Double-FKS phase space routine for 2 → 4 cross sections, requires 𝑚5 = 𝑚6 = 0. Tuned for ∢(𝑞3, 𝑞5,6) and
𝐸5,6 Partioning of PSX4_35_36_FKSS() with min

(︀
𝑠45, 𝑠46

)︀
> min

(︀
𝑠15, 𝑠25, 𝑠35, 𝑠16, 𝑠26, 𝑠36

)︀
.

Parameters

11.5. Technical routines 83

McMule, Release v0.5.1

• ra (8) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

subroutine PSX4_coP_45_46_FKSS(ra, q1, m1, q2, m2, q3, m3, q4, m4, q5, q6, weight)
The corner piece to PSX4_P_45_46_FKSS()

Parameters

• ra (5) [real(kind=prec),in] :: the random numbers

• qi (4) [real(kind=prec),out] :: the momenta

• mi [real(kind=prec),in] :: the masses

• weight [real(kind=prec),out] :: the Jacobian

84 Chapter 11. Fortran reference guide

Chapter 12

pymule user guide

This section describes all public functions and classes in pymule.

12.1 Working with files

pymule.mergefks(*sets, **kwargs)
performs the FKS merge

Parameters

• sets – random-seed-merged results (usually from sigma())

• binwisechi – bool, optional, default False; if set to True, also return extra distributions
containing the 𝜒2 of the bin-wise FKS merge. This cannot be used together with anyxi and
the result should not be passed to scaleset for obvious reasons.

Returns

the FKS-merged final set containing cross sections, distributions, and run-time information. The
chi2a return is a list of the following

• the 𝜒2 of the FKS merge

• a list of 𝜒2 from previous operations, such as random seed merging or the integration.

Note: Optional argument anyxi (or anything starting with anyxi): Sometimes it is necessary to merge 𝜉𝑐-
dependent runs (such as a counter term) and 𝜉𝑐-independent runs (such as the one-loop term). Do not use this
together with binwisechi

Example
Load the LO results for the muon decay using sigma()

>>> mergefks(sigma("m2enn0"))

Load the NLO results

>>> mergefks(sigma("m2ennV"), sigma("m2ennR"))

Load the NNLO results where m2ennNF does not depend on 𝜉𝑐

85

McMule, Release v0.5.1

>>> mergefks(sigma("m2ennFF"), sigma("m2ennRF"), sigma("m2ennRR"),␣
→˓anyxi=sigma("m2ennNF"))

pymule.setup(**kwargs)
sets the default arguemnts for sigma().

Parameters

• folder – str, optional; file name, optional; folder or tarball to search for vegas files Initialised
to current directory (.).

• flavour – str, optional; the flavour to load, defaults to everything Initialised to everything,
i.e. .*.

• obs – str, optional; the observable to load (the bit after the O), defaults to everything Ini-
tialised to everything, i.e. ''.

• folderp – str, optional; a regular expression to match directory structures of a tar file, de-
faults to everything Initialised to everything, i.e. .*.

• filenames – list, optional; list of files to loads, defaults to all files in folder (recurisvely if
tar ball) Initialised to None, meaning everything.

• merge – dict, optional: a dict of histograms {'name': n} to merge n bins in the histogram
name. Initialised to to no merging, i.e. {}

• types – list of callables, optional; functions that convert the groups matched by r into python
objects. Common examples would be int or float. Initialised to [int,float, float]
as per McMule filename convention.

• sanitycheck – callable, optional; a function that, given a vegas dict, whether to include the
file in the output (return True) or to skip (return False). Initialised to lambda x : True,
i.e. include everything.

• cache – folder name, optional; if existing folder, use as cache for compressed tarballs

Example
Setup some folders, ensure that /tmp/mcmule exists

>>> setup(folder="path/to/data.tar.bz2", cachefolder="/tmp/mcmule")

Example
Restrict observable

>>> setup(obs="3")

Example
Drop runs with a 𝜒2 > 10

>>> setup(sanitycheck=lambda x : x['chi2a'] < 10)

pymule.sigma(piece, **kwargs)
loads a which_piece and statistically combines the random seed.

Parm piece
str; which_piece to load

Parameters

• folder – str, optional; file name, optional; folder or tarball to search for vegas files Initialised
to current directory (.).

86 Chapter 12. pymule user guide

McMule, Release v0.5.1

• flavour – str, optional; the flavour to load, defaults to everything Initialised to everything,
i.e. .*.

• obs – str, optional; the observable to load (the bit after the O), defaults to everything Ini-
tialised to everything, i.e. ''.

• folderp – str, optional; a regular expression to match directory structures of a tar file, de-
faults to everything Initialised to everything, i.e. .*.

• filenames – list, optional; list of files to loads, defaults to all files in folder (recurisvely if
tar ball) Initialised to None, meaning everything.

• merge – dict, optional: a dict of histograms {'name': n} to merge n bins in the histogram
name. Initialised to to no merging, i.e. {}

• types – list of callables, optional; functions that convert the groups matched by r into python
objects. Common examples would be int or float. Initialised to [int,float, float]
as per McMule filename convention.

• sanitycheck – callable, optional; a function that, given a vegas dict, whether to include the
file in the output (return True) or to skip (return False). Initialised to lambda x : True,
i.e. include everything.

• cache – folder name, optional; if existing folder, use as cache for compressed tarballs

Returns
a dict with the tuples of FKS parameters as keys and vegas datasets as values.

Note: Use setup() to set the defaults. Arguments provided here override the defaults

Example
Load the leading order muon decay

>>> sigma("m2enn0")

Load only observable O3

>>> sigma("m2enn0", obs="3")

12.2 Working with errors

pymule.addplots(a, b, sa=1.0, sb=1.0)
adds or subtracts two plots

Parameters

• a – Nx3 numpy matrix; the first plot

• b – Nx3 numpy matrix; the second plot

• sa – float, optional; the coefficient of the first plot

• sb – float, optional; the coefficient of the second plot

Returns
a Nx3 numpy matrix with 𝑠𝑎 · 𝑎+ 𝑠𝑏 · 𝑏

12.2. Working with errors 87

McMule, Release v0.5.1

Note: a and b must share x values, otherwise entries are dropped

Example
subtract two plots a and b

>>> addplots(a, b, sb=-1)

Example
Given the LO plots thetaLO and the NLO corrections thetadNLO, we calculate the 𝐾 factor as
either

>>> thetaNLO = addplots(thetaLO, thetadNLO)

pymule.chisq(values)
calculates the 𝜒2/d.o.f. of numbers

Parameters
value – Nx2 numpy matrix or list of lists; the values as [[y1, dy1], [y2, dy2], ...]

Returns
float; the 𝜒2/d.o.f. = 1

𝑛

∑︀𝑛
𝑛=1(

𝑦𝑖−𝑦
𝛿𝑦𝑖

)2 with the average value 𝑦

Example
a good example

>>> chisq([[20.0, 0.8],
... [21.6, 0.9],
... [18.7, 1.2]])
1.3348808062205872

and a bad example

>>> chisq([[16.2, 0.8],
... [22.9, 0.9],
... [8.81, 1.2]])
30.173852184366673

pymule.dividenumbers(a, b)
divides numbers

Parameters

• a – list of floats; the numerator with error [a, da]

• b – list of floats; the denominator with error [b, db]

Returns
the result of the division a/b [y, dy]

Example
Divide (2.3± 0.1)/(45± 0.01)

>>> dividenumbers([2.3, 0.1], [45., 0.01])
array([0.05111111, 0.00222225])

88 Chapter 12. pymule user guide

McMule, Release v0.5.1

pymule.divideplots(a, b, offset=0.0)
divides two plots

Parameters

• a – Nx3 numpy matrix; the numerator plot

• b – Nx3 numpy matrix; the denominator plot

• offset – float, optional; shifts the result

Returns
a Nx3 numpy matrix with 𝑎/𝑏+ 𝑜𝑓𝑓𝑠𝑒𝑡

Note: a and b must share x values, otherwise entries are dropped

Example
Given the LO plots thetaLO and the NLO corrections thetadNLO, we calculate the 𝐾 factor as
either

>>> thetaNLO = addplots(thetaLO, thetadNLO)
>>> thetaK = divideplots(thetaNLO, thetaLO)
>>> thetaK = divideplots(thetadNLO, thetaLO, offset=+1.)

pymule.integratehistogram(hist)
integrates a histogram

Parameters
hist – Nx3 numpy matrix; the histogram to integrate 𝑑𝜎/𝑑𝑥 as np.array([[x1, y1, e1],
[x2, y2, e2], ...])

Returns
float; the integrated histogram

∫︀
𝑑𝜎/𝑑𝑥𝑑𝑥 without error estimate

Example
Integrate a histogram

>>> hist
array([[-inf, 0.00000000e+00, 0.00000000e+00],

[5.00000000e-02, 4.77330751e+01, 2.26798977e-01],
[1.50000000e-01, 7.40641192e+01, 2.36498021e-01],
...,
[8.85000000e+00, 1.67513948e+00, 1.16218116e-01],
[8.95000000e+00, 0.00000000e+00, 0.00000000e+00],
[inf, 0.00000000e+00, 0.00000000e+00]])

>>> integratehistogram(hist)
4188.519369660588

pymule.mergebins(p, n)
merges n adjacent bins into one larger bin, reducing the uncertainty.

Parameters

• p – Nx3 numpy matrix; the plot

• n – int; how many bins to merge

12.2. Working with errors 89

McMule, Release v0.5.1

Returns
a (N/n)x3 numpy matrix

Note: This process loses len(p)%n bins at the end of the histogram

Example
merge five bins

>>> len(p)
200
>>> len(mergebins(p, 5))
40

Bins may be lost

>>> len(p)
203
>>> len(mergebins(p, 5))
40

pymule.mergenumbers(values, quiet=False)
statistically combines values with uncertainties

Parameters

• values – Nx2 numpy matrix or list of lists; the values as [[y1, dy1], [y2, dy2], ...]

• quiet – bool, optional; whether to print or return the 𝜒2 for the combination

Returns
either answer as numpy array [y, dy] or tuple of 𝑐ℎ𝑖2 and answer

Example
If quiet is not specified this will print the 𝑐ℎ𝑖2

>>> mergenumbers([[20.0, 0.8],
... [21.6, 0.9],
... [18.7, 1.2]])
1.3348808062205872
array([20.30718232, 0.53517179])

Otherwise, it will return it

>>> mergenumbers([[20.0, 0.8],
... [21.6, 0.9],
... [18.7, 1.2]], quiet=True)
(1.3348808062205872, array([20.30718232, 0.53517179]))

pymule.mergeplots(ps, returnchi=False)
statistically combines a list of plots

Parameters

• ps – list of Nx3 numpy matrices; the plots to combine as [np.array([[x1, y1, e1],
[x2, y2, e2], ...]), ...]

90 Chapter 12. pymule user guide

McMule, Release v0.5.1

• returnchi – bool, optional; if True returns two plots, the requested combination and the
bin-wise 𝜒2

Returns
a Nx3 numpy matrix if returnchi=False

Example
Load a number of vegas files and merge them

>>> data = [
... importvegas(i)['thetae']
... for i in glob.glob('out/em2em0*')
...]
>>> mergeplots(data)

pymule.plusnumbers(*args)
adds numbers and errors

Parameters
yi – list of floats; a number with error [yi, dyi]

Returns
the result of the addition [y, dy]

Example
Adding (10± 1) + (20± 0.5) + (−5± 2)

>>> plusnumbers([10, 1], [20, 0.5], [-5, 2])
array([25. , 2.29128785])

pymule.printnumber(x, prec=0)
returns a string representation of a number with uncertainties to one significant digit

Parameters

• x – a list with two floats; the number as [x, dx]

• prec – int, otpional; number of extra signficant figures

Returns
str; the formatted string

Example
printing 53.2± 0.1 to one significant figure

>>> printnumber([53.2, 0.1])
"53.2(1)"

pymule.scaleplot(a, sx, sy=None)
rescales a plot such that the integrated plot remains unchanged, i.e. rescale 𝑥 → 𝑥/𝑠 and 𝑦 → 𝑦 · 𝑠. This is
useful to, for example, change units.

Parameters

• a – Nx3 numpy matrix; the plot

• sx – float; the inverse scale factor for the x direction

• sy – float, optional; if present, sy will be used for the y direction instead of sx

12.2. Working with errors 91

McMule, Release v0.5.1

Returns
a Nx3 numpy matrix

Example
rescaling units from rad to mrad

>>> scaleplot(data, 1e-3)

pymule.timesnumbers(a, b)
multiplies numbers

Parameters

• a – list of floats; the first factor with error [a, da]

• b – list of floats; the second factor with error [b, db]

Returns
the result of the multiplication a*b [y, dy]

Example
Divide (0.5± 0.02) * (45± 0.01)

>>> timesnumbers([0.5,0.02], [45, 0.1])
array([22.5 , 0.90138782])

12.3 Plotting

pymule.errorband(p, ax=None, col='default', underflow=False, overflow=False, linestyle='solid')
plots an errorband of a compatible histogram

Parameters

• p – Nx3 numpy matrix; the histogram to plot as np.array([[x1, y1, e1], [x2, y2,
e2], ...])

• ax – axes, optional: the axes object to use, defaults to gca() which may create a new axes.

• col – the colour to be used for the plot. Per default matplotlib decides using the order
specified in colours

• underflow – bool, optional; whether to plot the underflow bin. Either logical or number
indicating the how much bigger it shall be

• overflow – bool, optional; whether to plot the overflow bin. Either logical or number indi-
cating the how much bigger it shall be

• linestyle – str, optional; which line style to use

Returns
the artis of the main line but not the one of the errorbars

Example
Make a simple plot

>>> errorband(dat)

Make a plot in red with dashed lines

92 Chapter 12. pymule user guide

McMule, Release v0.5.1

>>> errorband(dat, 'red', 'dashed')

pymule.kplot(sigma, labelx='x_e', labelsigma=None, labelknlo='$\\delta K^{(1)}$', labelknnlo='$\\delta
K^{(2)}$', legend={'lo': '$\\rm LO$', 'nlo': '$\\rm NLO$', 'nnlo': '$\\rm NNLO$'}, legendopts={'loc':
'upper right', 'what': 'l'}, linestyle2=':', show=[0, -1], showk=[1, 2], nomule=False)

produces a K factor plot in line with McMule’s design, i.e. a two-panel plot showing in the upper panel the cross
sections and in the lower panel the K factor defined as

𝐾(𝑖) = 𝑑𝜎(𝑖)/𝑑𝜎(𝑖−1)

Parameters

• sigma – dict; the data to plot, given as a dict with keys lo, nlo, and possibly nnlo. Only
pass the corrections, not the full distribution

• labelx – str, optional; label for the x axis (supports LaTeX maths)

• labelsigma – str, optional; label for the upper y axis (supports LaTeX maths)

• labelknlo – str, optional; the labels for the NLO K factor

• labelknnlo – str, optional; the labels for the NNLO K factor

• show – list, optional; a list which cross sections to show, 0 indicates the LO cross section, 1
the NLO etc. -1 indicates the last given cross section

• showk – list, optional; a list which K factors to show, 0 indicates the LO cross section, 1 the
NLO etc. -1 indicates the last given cross section

• legend – dict, optional; a dict with the legend for lo, nlo, nnlo. The keys nlo2 and nnlo2
are optional and will be drawn dashed in the lower panel.

• legendopts – dict, optional; a kwargs dict of options to be passed to legend(..) as well
as the what key indicating whether the legend such be placed in the lower panel (l, default),
upper panel (u), or as a figlegend (fig). Notable is the loc-key that places the legend
inside the object specified by what. Possible values are (cf. legend)

– upper right

– upper left

– lower left

– lower right

– right

– center left

– center right

– lower center

– upper center

– center

• nomule – bool, optional; if set to True, no mule will be printed

Returns
the figure as well as all axis created

Example
An NNLO K factor plot

12.3. Plotting 93

McMule, Release v0.5.1

>>> fig, (ax1, ax2, ax3) = kplot(
... {
... 'lo': lodata['thetae'],
... 'nlo': nlodata['thetae'],
... 'nnlo':nnlodata['thetae'],
... },
... labelx="$\theta_e\,/\,{\rm mrad}$",
... labelsigma="$\D\sigma/\D\theta_e\ /\ {\rm\upmu b}$",
... legend={
... 'lo': '$\sigma^{(0)}$',
... 'nlo': '$\sigma^{(1)}$',
... 'nnlo': '$\sigma^{(2)}$'
... },
... legendopts={'what': 'u', 'loc': 'lower right'}
...)

pymule.mergefkswithplot(sets, scale=1.0, showfit=[True, True], xlim=[-7, 0])
performs and FKS merge like mergefks() but it also produces a 𝜉𝑐 independence plot

Note: In contrast mergefks(), here phase-space partioned results need to be merged first. This is done by
grouping those into an array first, sorted by number of particles in the final state, i.e. we start with the n-particle
corrections.

Parameters

• sets – list of list of random-seed-merged results (usually from sigma()), starting with the
lowest particle number and going up

• scale – float, optional; rescale factor for the plot and result

• showfit – [bool, bool], optional; whether to show the fit lines in the overview plot (first
element) and the zoomed in plot (second element)

• xlim – tuple of floats, optional; upper and lower bounds for log 𝜉𝑐
Returns

a figure and the FKS-merged final set containing cross sections, distributions, and run-time in-
formation. The chi2a return is a list of the following

• the 𝜒2 of the FKS merge

• a list of 𝜒2 from previous operations, such as random seed merging or the integration.

Example
In the partioned muon-electron scattering case

>>> fig, res = mergefkswithplot([
... [
... sigma('em2emFEE'), sigma('em2emFMM'), sigma('em2emFEM')
...], [
... sigma('em2emREE15'), sigma('em2emREE35'),
... sigma('em2emRMM'),
... sigma('em2emREM')
...]
...])

94 Chapter 12. pymule user guide

McMule, Release v0.5.1

pymule.mulify(fig, delx=0, dely=0, col='lightgray', realpha=True)
adds the McMule logo to a figure

Parameters

• fig – figure to add the logo

• delx – float, optional; shift the logo in x direction

• dely – float, optional; shift the logo in x direction

• col – colour specifier, optional; colour to use for the logo

• realpha – bool, optional; whether to re-run the alpha channel

pymule.watermark(fig, txt='PRELIMINARY', fontsize=60, rotation=20)
watermarks a figure

Parameters

• fig – the figure to watermark

• txt – str, optional; the watermark text to use

• fontsize – int, optional; the fontsize of the watermark

• rotation – int, optional; the angle of the watermark in deg

Example
Watermark a figure as preliminary

>>> fig = figure()
>>> ...
>>> watermark(fig)

Watermark a figure as incomplete

>>> fig = figure()
>>> ...
>>> watermark(fig, "INCOMPLETE")

pymule.xiresidue(sets, n, xlim=[-7, 0], scale=1)
creates a residue plot for a 𝜉𝑐 fit

Parameters

• sets – dict or list; random-seed-merged results (usually from sigma()) or list thereof

• n – int; order of the fit, 1 at NLO, 2 at NNLO

• xlim – tuple of floats, optional; upper and lower bounds for log 𝜉𝑐
• scale – float, optional; rescale factor for the plots

Returns
a figure and the fit coefficients as a matrix

12.3. Plotting 95

McMule, Release v0.5.1

96 Chapter 12. pymule user guide

Chapter 13

pymule reference guide

This section describes all functions and classes in pymule. Most users will not have to view this.

13.1 Working with errors

pymule.errortools.addplots(a, b, sa=1.0, sb=1.0)
adds or subtracts two plots

Parameters

• a – Nx3 numpy matrix; the first plot

• b – Nx3 numpy matrix; the second plot

• sa – float, optional; the coefficient of the first plot

• sb – float, optional; the coefficient of the second plot

Returns
a Nx3 numpy matrix with 𝑠𝑎 · 𝑎+ 𝑠𝑏 · 𝑏

Note: a and b must share x values, otherwise entries are dropped

Example
subtract two plots a and b

>>> addplots(a, b, sb=-1)

Example
Given the LO plots thetaLO and the NLO corrections thetadNLO, we calculate the 𝐾 factor as
either

>>> thetaNLO = addplots(thetaLO, thetadNLO)

pymule.errortools.chisq(values)
calculates the 𝜒2/d.o.f. of numbers

97

McMule, Release v0.5.1

Parameters
value – Nx2 numpy matrix or list of lists; the values as [[y1, dy1], [y2, dy2], ...]

Returns
float; the 𝜒2/d.o.f. = 1

𝑛

∑︀𝑛
𝑛=1(

𝑦𝑖−𝑦
𝛿𝑦𝑖

)2 with the average value 𝑦

Example
a good example

>>> chisq([[20.0, 0.8],
... [21.6, 0.9],
... [18.7, 1.2]])
1.3348808062205872

and a bad example

>>> chisq([[16.2, 0.8],
... [22.9, 0.9],
... [8.81, 1.2]])
30.173852184366673

pymule.errortools.combineNplots(func, plots)
combines a list of plots using a function

Parameters

• func – callable with two arguments; the function to combine the plots

• plots – list of Nx3 numpy matrices

Returns
a Nx3 numpy matrix 𝑓(𝑝0, 𝑓(𝑝1, 𝑓(𝑝2, · · ·)))

pymule.errortools.combineplots(a, b, yfunc, efunc, tol=1e-08)
combines two plots using functions for the value and the error

Parameters

• a – Nx3 numpy matrix; the first plot

• b – Nx3 numpy matrix; the second plot

• yfunc – callable; a function to calculate the value yfunc(a, b)

• efunc – callable; a function to calculate the error efunc(a, da b, db)

• tol – float, optional; the difference at which values are considered equal

Returns
Nx3 numpy matrix; the combined plot np.array([[x1, yfunc(..), efunc(..)], ..])

Note: a and b must share x values, up to the tolerance tol, otherwise values may be dropped

Example
Add two plots A and B

>>> combineplots(A, B,
... lambda a, b: a+b,
... lambda a, da, b, db: sqrt(da**2 + db**2))

98 Chapter 13. pymule reference guide

McMule, Release v0.5.1

Calculate a K factor

>>> combineplots(dnlo, lo,
... lambda a, b: 1 + a/b,
... lambda a, da, b, db: np.sqrt(db**2 * a**2 / b**4 +␣
→˓da**2 / b**2)

pymule.errortools.dividenumbers(a, b)
divides numbers

Parameters

• a – list of floats; the numerator with error [a, da]

• b – list of floats; the denominator with error [b, db]

Returns
the result of the division a/b [y, dy]

Example
Divide (2.3± 0.1)/(45± 0.01)

>>> dividenumbers([2.3, 0.1], [45., 0.01])
array([0.05111111, 0.00222225])

pymule.errortools.divideplots(a, b, offset=0.0)
divides two plots

Parameters

• a – Nx3 numpy matrix; the numerator plot

• b – Nx3 numpy matrix; the denominator plot

• offset – float, optional; shifts the result

Returns
a Nx3 numpy matrix with 𝑎/𝑏+ 𝑜𝑓𝑓𝑠𝑒𝑡

Note: a and b must share x values, otherwise entries are dropped

Example
Given the LO plots thetaLO and the NLO corrections thetadNLO, we calculate the 𝐾 factor as
either

>>> thetaNLO = addplots(thetaLO, thetadNLO)
>>> thetaK = divideplots(thetaNLO, thetaLO)
>>> thetaK = divideplots(thetadNLO, thetaLO, offset=+1.)

pymule.errortools.integratehistogram(hist)
integrates a histogram

Parameters
hist – Nx3 numpy matrix; the histogram to integrate 𝑑𝜎/𝑑𝑥 as np.array([[x1, y1, e1],
[x2, y2, e2], ...])

13.1. Working with errors 99

McMule, Release v0.5.1

Returns
float; the integrated histogram

∫︀
𝑑𝜎/𝑑𝑥𝑑𝑥 without error estimate

Example
Integrate a histogram

>>> hist
array([[-inf, 0.00000000e+00, 0.00000000e+00],

[5.00000000e-02, 4.77330751e+01, 2.26798977e-01],
[1.50000000e-01, 7.40641192e+01, 2.36498021e-01],
...,
[8.85000000e+00, 1.67513948e+00, 1.16218116e-01],
[8.95000000e+00, 0.00000000e+00, 0.00000000e+00],
[inf, 0.00000000e+00, 0.00000000e+00]])

>>> integratehistogram(hist)
4188.519369660588

pymule.errortools.mergebins(p, n)
merges n adjacent bins into one larger bin, reducing the uncertainty.

Parameters

• p – Nx3 numpy matrix; the plot

• n – int; how many bins to merge

Returns
a (N/n)x3 numpy matrix

Note: This process loses len(p)%n bins at the end of the histogram

Example
merge five bins

>>> len(p)
200
>>> len(mergebins(p, 5))
40

Bins may be lost

>>> len(p)
203
>>> len(mergebins(p, 5))
40

pymule.errortools.mergenumbers(values, quiet=False)
statistically combines values with uncertainties

Parameters

• values – Nx2 numpy matrix or list of lists; the values as [[y1, dy1], [y2, dy2], ...]

• quiet – bool, optional; whether to print or return the 𝜒2 for the combination

Returns
either answer as numpy array [y, dy] or tuple of 𝑐ℎ𝑖2 and answer

100 Chapter 13. pymule reference guide

McMule, Release v0.5.1

Example
If quiet is not specified this will print the 𝑐ℎ𝑖2

>>> mergenumbers([[20.0, 0.8],
... [21.6, 0.9],
... [18.7, 1.2]])
1.3348808062205872
array([20.30718232, 0.53517179])

Otherwise, it will return it

>>> mergenumbers([[20.0, 0.8],
... [21.6, 0.9],
... [18.7, 1.2]], quiet=True)
(1.3348808062205872, array([20.30718232, 0.53517179]))

pymule.errortools.mergeplots(ps, returnchi=False)
statistically combines a list of plots

Parameters

• ps – list of Nx3 numpy matrices; the plots to combine as [np.array([[x1, y1, e1],
[x2, y2, e2], ...]), ...]

• returnchi – bool, optional; if True returns two plots, the requested combination and the
bin-wise 𝜒2

Returns
a Nx3 numpy matrix if returnchi=False

Example
Load a number of vegas files and merge them

>>> data = [
... importvegas(i)['thetae']
... for i in glob.glob('out/em2em0*')
...]
>>> mergeplots(data)

pymule.errortools.plusnumbers(*args)
adds numbers and errors

Parameters
yi – list of floats; a number with error [yi, dyi]

Returns
the result of the addition [y, dy]

Example
Adding (10± 1) + (20± 0.5) + (−5± 2)

>>> plusnumbers([10, 1], [20, 0.5], [-5, 2])
array([25. , 2.29128785])

pymule.errortools.printnumber(x, prec=0)
returns a string representation of a number with uncertainties to one significant digit

Parameters

13.1. Working with errors 101

McMule, Release v0.5.1

• x – a list with two floats; the number as [x, dx]

• prec – int, otpional; number of extra signficant figures

Returns
str; the formatted string

Example
printing 53.2± 0.1 to one significant figure

>>> printnumber([53.2, 0.1])
"53.2(1)"

pymule.errortools.scaleplot(a, sx, sy=None)
rescales a plot such that the integrated plot remains unchanged, i.e. rescale 𝑥 → 𝑥/𝑠 and 𝑦 → 𝑦 · 𝑠. This is
useful to, for example, change units.

Parameters

• a – Nx3 numpy matrix; the plot

• sx – float; the inverse scale factor for the x direction

• sy – float, optional; if present, sy will be used for the y direction instead of sx

Returns
a Nx3 numpy matrix

Example
rescaling units from rad to mrad

>>> scaleplot(data, 1e-3)

pymule.errortools.timesnumbers(a, b)
multiplies numbers

Parameters

• a – list of floats; the first factor with error [a, da]

• b – list of floats; the second factor with error [b, db]

Returns
the result of the multiplication a*b [y, dy]

Example
Divide (0.5± 0.02) * (45± 0.01)

>>> timesnumbers([0.5,0.02], [45, 0.1])
array([22.5 , 0.90138782])

102 Chapter 13. pymule reference guide

McMule, Release v0.5.1

13.2 Working with abstract records

13.3 Working with vegas records

pymule.vegas.exportvegas(dic, filename='', fp=None)
saves a vegas file

Parameters

• dic –

a vegas dataset dictionary containing at least

– value: the best estimate for the cross section and its error as np.array([y, e])

– chi2a: the 𝜒2 estimate of the integrator

– all histograms as specified by their name(..) in user.f95

it may also contain the optional keys

– runtime: the runtime, defaults to time.clock()

– msg: any message, defaults to Warning: Generated with Python

– SHA: the first 5 characters of a hash, defaults to 00000

– iteration: the number of iterations in the file, defaults to 2

• filename – file name to open, optional

• fp – file pointer to write to, optional

• returnev – bool, optional; return the full vegas file or only usable things

Note: Either filename xor fp need to be specified

Example
save a random run to disk

>>> dic = {"value": [10, 0.2],
... "chi2a": 0.2,
... "Ee": np.array([[1, 5, 0.3], [2, 6, 0.35]])}
>>> exportvegas(dic ,"out.vegas")

pymule.vegas.getplots(s)
removes all the keys that are not distributions from a vegas dataset

Parameters
s – a vegas dataset or a list of vegas datasets

Returns
a list of plots appearing in all datasets

pymule.vegas.guess_version(fp, inttype='i')
infers version of the vegas file using either the version string (since v3) or the file length (v1 and v2).

Parameters

13.2. Working with abstract records 103

McMule, Release v0.5.1

• fp – file pointer

• inttype – either 'i' or 'q', optional; the integer type to use for v1 or v2, inferred otherwise

Returns
tuple of version number and integer type

pymule.vegas.importvegas(filename='', fp=None, inttype='i', returnev=False)
loads a vegas file

Parameters

• filename – file name to open, optional

• fp – file pointer to read, optional

• inttype – either 'i' or 'q', optional; the integer type to use for v1 or v2, inferred otherwise

• returnev – bool, optional; return the full vegas file or only usable things

Returns

a vegas dataset dictionary containing

• time: the job’s run time (since v2)

• msg: any message. Usually this contains information on the state of the integrator (since
v2)

• SHA: the first 5 characters of the source-tree’s SHA1 hash at compile time.

• iteration: the number of iterations completed in this file

• value: the best estimate for the cross section and its error as np.array([y, e])

• chi2a: the 𝜒2 estimate of the integrator

• all histograms as specified by their name(..) in user.f95

if returnev is passed, also returns keys

• ndo

• xi: the vegas grid

• randy: the random number seed

Note: Either filename xor fp need to be specified

Note: If less than two iterations have been completed, no histograms will be returned

Example
Load a file for the muon decay

>>> importvegas('m2ennRR_mu-e_S0000068031X0.50000D0.50000_ITMX080x150M_
→˓O12.vegas')
{'time': 103523.659092, 'msg': 'Uninterupted integration. Program SHA␣
→˓isbe42eccf04a8fb0afa5fa2f80be6a492bb2093a4␣
→˓(git:423084d47038d3dbf51f69459d2e622312eec594)', 'SHA': 'be42e',
→˓'iteration': 44, 'value': array([-3.65282506e+06, 1.89792449e+02]),
→˓'chi2a': 0.8714706523473873, 'Ee': array([[-inf, 0.

(continues on next page)

104 Chapter 13. pymule reference guide

McMule, Release v0.5.1

(continued from previous page)

→˓00000000e+00, 0.00000000e+00],
[1.30000000e-02, 0.00000000e+00, 0.00000000e+00],
[3.90000000e-02, 0.00000000e+00, 0.00000000e+00],
...,
[2.59610000e+01, 0.00000000e+00, 0.00000000e+00],
[2.59870000e+01, 0.00000000e+00, 0.00000000e+00],
[inf, -3.65294784e+06, 1.79397543e+02]]), 'cthe':␣

→˓array([[-inf, 0.00000000e+00, 0.00000000e+00],
[-9.99000000e-01, -4.77190754e+06, 4.08877779e+03],
[-9.97000000e-01, -4.76466432e+06, 4.81770106e+03],
...,
[9.97000000e-01, 0.00000000e+00, 0.00000000e+00],
[9.99000000e-01, 0.00000000e+00, 0.00000000e+00],
[inf, 0.00000000e+00, 0.00000000e+00]])}

pymule.vegas.read_record(fp, typ)
reads a single FORTRAN record

Parameters

• fp – file pointer

• typ – the type to read, everything that struct understands. Examples are

– i: 32 bit signed integer (standard integer in Fortran)

– I: 32 bit unsigned integer

– q: 64 bit signed integer (integer*8 in Fortran)

– c: 8 bit charater (character in Fortran)

– d: 64 bit double precision (real(kind=prec) in Fortran, with default prec)

Records are data structures that are build as follows:

• 4 byte header: length of the record as a 32 bit unsigned integer, called l1

• body of length l1

• 4 byte footer: a repetition of l1 to make sure the record is properly closed.

Records can contain multiple variables.

pymule.vegas.write_record(fp, typ, content)
writes a single FORTRAN record

Parameters

• fp – file pointer

• typ – the type to read, everything that struct understands. Examples are

– i: 32 bit signed integer (standard integer in Fortran)

– I: 32 bit unsigned integer

– q: 64 bit signed integer (integer*8 in Fortran)

– c: 8 bit charater (character in Fortran)

– d: 64 bit double precision (real(kind=prec) in Fortran, with default prec)

13.3. Working with vegas records 105

McMule, Release v0.5.1

• content – scalar, list, str or bytes; the data to write

Records are data structures that are build as follows:

• 4 byte header: length of the record as a 32 bit unsigned integer, called l1

• body of length l1

• 4 byte footer: a repetition of l1 to make sure the record is properly closed.

Records can contain multiple variables.

13.4 Working with records of data

pymule.loader.addsets(s)
adds a list of vegas datasets

Parameters
s –

a list of vegas datasets dictionaries with the keys

• time

• value

• chi2a

• all histograms as specified by their name(..) in user.f95

Returns
the resulting sum. The resulting 𝜒2 is a list of constituent 𝜒2.

pymule.loader.callsanitised(func, **kwargs)
calls a function with arguments from kwargs and those specified in loadargs

Parameters

• func – callable; function to call

• **kwargs – arguments overriding loadargs

Arguments that don’t match func are discarded.

pymule.loader.commit_cache(cachefolder, full_name, fp)
writes to cache if cachefolder exists

Parameters

• cachefolder – path to cache folder

• full_name – name of file in cache folder

• fp – file pointer to read from

pymule.loader.hash_file(name)
hashes a files using SHA1

Parameters
name – file path

Returns
hex-digested SHA1 hash of the file

106 Chapter 13. pymule reference guide

McMule, Release v0.5.1

pymule.loader.importreg(r, folder='.', filenames=None, cachefolder='', merge={}, types=[<class 'int'>, <class
'float'>, <class 'float'>], sanitycheck=<function <lambda>>)

imports all vegas files matching a regular expression

Parameters

• r – str; regular expression to match in file names

• folder – str, optional; file name, optional; folder or tarball to search for vegas files

• filenames – list, optional; list of files to loads, defaults to all files in folder (recurisvely if
tar ball)

• cachefolder – folder name, optional; if existing folder, use as cache for compressed tarballs

• merge – dict, optional: a dict of histograms {'name': n} to merge n bins in the histogram
name. defaults to no merging

• types – list of callables, optional; functions that convert the groups matched by r into python
objects. Common examples would be int or float. Default: [int,float, float] as per
McMule filename convention

• sanitycheck – callable, optional; a function that, given a vegas dict, whether to include the
file in the output (return True) or to skip (return False).

Returns
a dictionary of merged vegas datasets, keyed by the groups defined in the regular expression r as
parsed by types

pymule.loader.mergefks(*sets, **kwargs)
performs the FKS merge

Parameters

• sets – random-seed-merged results (usually from sigma())

• binwisechi – bool, optional, default False; if set to True, also return extra distributions
containing the 𝜒2 of the bin-wise FKS merge. This cannot be used together with anyxi and
the result should not be passed to scaleset for obvious reasons.

Returns

the FKS-merged final set containing cross sections, distributions, and run-time information. The
chi2a return is a list of the following

• the 𝜒2 of the FKS merge

• a list of 𝜒2 from previous operations, such as random seed merging or the integration.

Note: Optional argument anyxi (or anything starting with anyxi): Sometimes it is necessary to merge 𝜉𝑐-
dependent runs (such as a counter term) and 𝜉𝑐-independent runs (such as the one-loop term). Do not use this
together with binwisechi

Example
Load the LO results for the muon decay using sigma()

>>> mergefks(sigma("m2enn0"))

Load the NLO results

13.4. Working with records of data 107

McMule, Release v0.5.1

>>> mergefks(sigma("m2ennV"), sigma("m2ennR"))

Load the NNLO results where m2ennNF does not depend on 𝜉𝑐

>>> mergefks(sigma("m2ennFF"), sigma("m2ennRF"), sigma("m2ennRR"),␣
→˓anyxi=sigma("m2ennNF"))

pymule.loader.mergeseeds(s, key=<function <lambda>>)
statistically merges the different random seeds of a number of runs, combining cross sections, histograms, and
run-time information.

Parameters

• s – a list of vegas datasets

• key – callable; function to define the keys of the resulting dictionary. Usually, this refers to
the FKS parameters. In the default notation this is lambda x: (x[1], x[2]) referring
to 𝜉𝑐 and 𝛿, resp.

Raises
KeyError ‘time’: if merge is unsucessfull because no data is found

Todo
make error handling more useful

Returns

a merged vegas dataset. The runtime is the sum of individual times. The 𝜒2 is a list of

• the 𝜒2 of the cross section combination

• a list of the individual 𝜒2

pymule.loader.mergeset(s, binwisechi=False)
statistically merges a set of runs, combining cross sections, histograms, and run-time information

Parameters

• s – a list of vegas datasets

• binwisechi – bool, optional; whether to include the bin-wise 𝜒2 in the result.

Raises
KeyError ‘time’: if merge is unsucessfull because no data is found

Todo
make error handling more useful

Returns

a merged vegas dataset. The runtime is the sum of individual times. The 𝜒2 is a list of

• the 𝜒2 of the cross section combination

• a list of the individual 𝜒2

pymule.loader.multiintersect(lists)
finds elements that are common to all lists. This is used to find a list of FKS parameters of a given run.

Parameters
list – list of lists 𝑙1, 𝑙2, . . . , 𝑙𝑛

108 Chapter 13. pymule reference guide

McMule, Release v0.5.1

Returns
the list 𝑙1 ∩ 𝑙2 ∩ · · · ∩ 𝑙𝑛

pymule.loader.pattern(piece='.*', flavour='.*', obs='', folderp='.*')
constructs a regular expression to be used in importreg() matching the usual McMule file name convention

Parameters

• piece – str, optional; the which_piece to load, defaults to everything

• flavour – str, optional; the flavour to load, defaults to everything

• obs – str, optional; the observable to load (the bit after the O), defaults to everything

• folderp – str, optional; a regular expression to match directory structures of a tar file, de-
faults to everything

Returns
a regular expression to be used in importreg()

pymule.loader.scaleset(s, v)
rescales a vegas dataset

Parameters

• s –

a vegas datasets dictionaries with the keys

– time

– value

– chi2a

– all histograms as specified by their name(..) in user.f95

• v – the value to rescale the y values.

Returns
the rescaled dataset

Note: This naturally changes the cross section

pymule.loader.scalesets(s, v)
rescales a list of vegas datasets

Parameters

• s –

a list of vegas datasets dictionaries with the keys

– time

– value

– chi2a

– all histograms as specified by their name(..) in user.f95

• v – the value to rescale the y values.

Returns
all rescaled datasets

13.4. Working with records of data 109

McMule, Release v0.5.1

Note: This naturally changes the cross section

pymule.loader.setup(**kwargs)
sets the default arguemnts for sigma().

Parameters

• folder – str, optional; file name, optional; folder or tarball to search for vegas files Initialised
to current directory (.).

• flavour – str, optional; the flavour to load, defaults to everything Initialised to everything,
i.e. .*.

• obs – str, optional; the observable to load (the bit after the O), defaults to everything Ini-
tialised to everything, i.e. ''.

• folderp – str, optional; a regular expression to match directory structures of a tar file, de-
faults to everything Initialised to everything, i.e. .*.

• filenames – list, optional; list of files to loads, defaults to all files in folder (recurisvely if
tar ball) Initialised to None, meaning everything.

• merge – dict, optional: a dict of histograms {'name': n} to merge n bins in the histogram
name. Initialised to to no merging, i.e. {}

• types – list of callables, optional; functions that convert the groups matched by r into python
objects. Common examples would be int or float. Initialised to [int,float, float]
as per McMule filename convention.

• sanitycheck – callable, optional; a function that, given a vegas dict, whether to include the
file in the output (return True) or to skip (return False). Initialised to lambda x : True,
i.e. include everything.

• cache – folder name, optional; if existing folder, use as cache for compressed tarballs

Example
Setup some folders, ensure that /tmp/mcmule exists

>>> setup(folder="path/to/data.tar.bz2", cachefolder="/tmp/mcmule")

Example
Restrict observable

>>> setup(obs="3")

Example
Drop runs with a 𝜒2 > 10

>>> setup(sanitycheck=lambda x : x['chi2a'] < 10)

pymule.loader.sigma(piece, **kwargs)
loads a which_piece and statistically combines the random seed.

Parm piece
str; which_piece to load

Parameters

• folder – str, optional; file name, optional; folder or tarball to search for vegas files Initialised
to current directory (.).

110 Chapter 13. pymule reference guide

McMule, Release v0.5.1

• flavour – str, optional; the flavour to load, defaults to everything Initialised to everything,
i.e. .*.

• obs – str, optional; the observable to load (the bit after the O), defaults to everything Ini-
tialised to everything, i.e. ''.

• folderp – str, optional; a regular expression to match directory structures of a tar file, de-
faults to everything Initialised to everything, i.e. .*.

• filenames – list, optional; list of files to loads, defaults to all files in folder (recurisvely if
tar ball) Initialised to None, meaning everything.

• merge – dict, optional: a dict of histograms {'name': n} to merge n bins in the histogram
name. Initialised to to no merging, i.e. {}

• types – list of callables, optional; functions that convert the groups matched by r into python
objects. Common examples would be int or float. Initialised to [int,float, float]
as per McMule filename convention.

• sanitycheck – callable, optional; a function that, given a vegas dict, whether to include the
file in the output (return True) or to skip (return False). Initialised to lambda x : True,
i.e. include everything.

• cache – folder name, optional; if existing folder, use as cache for compressed tarballs

Returns
a dict with the tuples of FKS parameters as keys and vegas datasets as values.

Note: Use setup() to set the defaults. Arguments provided here override the defaults

Example
Load the leading order muon decay

>>> sigma("m2enn0")

Load only observable O3

>>> sigma("m2enn0", obs="3")

13.5 Working with 𝜉𝑐 data

pymule.xicut.addkeyedsets(sets)
adds list of keyed sets using addsets()

pymule.xicut.get_errorbands(x, coeff , covar, ndata, cf=0.9)
evaluates the errorbands of the fit obtained by get_val()

Parameters

• x – iterable; values of 𝜉𝑐 to evaluate

• coeff – list; coefficient list [a_0, a_1, ..., a_n]

• covar – list; the covariance matrix

• ndata – int; the number of data points used in the fit, required for the 𝑡 value estimation

• cl – float, optional; the confidence level used

13.5. Working with 𝜉𝑐 data 111

McMule, Release v0.5.1

Returns
list; the values and errors of the fit at the presented values as [x, y, y-dy, y+dy]

pymule.xicut.get_val(xs, coeff)
evaluates the fit obtained by get_val()

Parameters

• xs – iterable; values of 𝜉𝑐 to evaluate

• coeff – list; coefficient list [a_0, a_1, ..., a_n]

Returns
list; the values of the fit at the presented values.

pymule.xicut.mergefkswithplot(sets, scale=1.0, showfit=[True, True], xlim=[-7, 0])
performs and FKS merge like mergefks() but it also produces a 𝜉𝑐 independence plot

Note: In contrast mergefks(), here phase-space partioned results need to be merged first. This is done by
grouping those into an array first, sorted by number of particles in the final state, i.e. we start with the n-particle
corrections.

Parameters

• sets – list of list of random-seed-merged results (usually from sigma()), starting with the
lowest particle number and going up

• scale – float, optional; rescale factor for the plot and result

• showfit – [bool, bool], optional; whether to show the fit lines in the overview plot (first
element) and the zoomed in plot (second element)

• xlim – tuple of floats, optional; upper and lower bounds for log 𝜉𝑐
Returns

a figure and the FKS-merged final set containing cross sections, distributions, and run-time in-
formation. The chi2a return is a list of the following

• the 𝜒2 of the FKS merge

• a list of 𝜒2 from previous operations, such as random seed merging or the integration.

Example
In the partioned muon-electron scattering case

>>> fig, res = mergefkswithplot([
... [
... sigma('em2emFEE'), sigma('em2emFMM'), sigma('em2emFEM')
...], [
... sigma('em2emREE15'), sigma('em2emREE35'),
... sigma('em2emRMM'),
... sigma('em2emREM')
...]
...])

pymule.xicut.myfit(data, n)
performs a log-polynomial

∑︀𝑛
𝑖=0 𝑎𝑖 log(𝜉𝑐)

𝑖 fit to date

112 Chapter 13. pymule reference guide

McMule, Release v0.5.1

Parameters

• data – numpy array; The different 𝜉𝑐 values in the format np.array([[xi1, y1, e1],
[xi2, y2, e2], ...]).

• n – the degree of the polynomial

Result
the coefficients and covariant matrix

pymule.xicut.xiresidue(sets, n, xlim=[-7, 0], scale=1)
creates a residue plot for a 𝜉𝑐 fit

Parameters

• sets – dict or list; random-seed-merged results (usually from sigma()) or list thereof

• n – int; order of the fit, 1 at NLO, 2 at NNLO

• xlim – tuple of floats, optional; upper and lower bounds for log 𝜉𝑐
• scale – float, optional; rescale factor for the plots

Returns
a figure and the fit coefficients as a matrix

13.6 Working with plots

pymule.plot.errorband(p, ax=None, col='default', underflow=False, overflow=False, linestyle='solid')
plots an errorband of a compatible histogram

Parameters

• p – Nx3 numpy matrix; the histogram to plot as np.array([[x1, y1, e1], [x2, y2,
e2], ...])

• ax – axes, optional: the axes object to use, defaults to gca() which may create a new axes.

• col – the colour to be used for the plot. Per default matplotlib decides using the order
specified in colours

• underflow – bool, optional; whether to plot the underflow bin. Either logical or number
indicating the how much bigger it shall be

• overflow – bool, optional; whether to plot the overflow bin. Either logical or number indi-
cating the how much bigger it shall be

• linestyle – str, optional; which line style to use

Returns
the artis of the main line but not the one of the errorbars

Example
Make a simple plot

>>> errorband(dat)

Make a plot in red with dashed lines

>>> errorband(dat, 'red', 'dashed')

13.6. Working with plots 113

McMule, Release v0.5.1

pymule.plot.format_label_string_with_exponent(ax, axis='both')
Format the label string with the exponent from the ScalarFormatter

pymule.plot.kplot(sigma, labelx='x_e', labelsigma=None, labelknlo='$\\delta K^{(1)}$', labelknnlo='$\\delta
K^{(2)}$', legend={'lo': '$\\rm LO$', 'nlo': '$\\rm NLO$', 'nnlo': '$\\rm NNLO$'},
legendopts={'loc': 'upper right', 'what': 'l'}, linestyle2=':', show=[0, -1], showk=[1, 2],
nomule=False)

produces a K factor plot in line with McMule’s design, i.e. a two-panel plot showing in the upper panel the cross
sections and in the lower panel the K factor defined as

𝐾(𝑖) = 𝑑𝜎(𝑖)/𝑑𝜎(𝑖−1)

Parameters

• sigma – dict; the data to plot, given as a dict with keys lo, nlo, and possibly nnlo. Only
pass the corrections, not the full distribution

• labelx – str, optional; label for the x axis (supports LaTeX maths)

• labelsigma – str, optional; label for the upper y axis (supports LaTeX maths)

• labelknlo – str, optional; the labels for the NLO K factor

• labelknnlo – str, optional; the labels for the NNLO K factor

• show – list, optional; a list which cross sections to show, 0 indicates the LO cross section, 1
the NLO etc. -1 indicates the last given cross section

• showk – list, optional; a list which K factors to show, 0 indicates the LO cross section, 1 the
NLO etc. -1 indicates the last given cross section

• legend – dict, optional; a dict with the legend for lo, nlo, nnlo. The keys nlo2 and nnlo2
are optional and will be drawn dashed in the lower panel.

• legendopts – dict, optional; a kwargs dict of options to be passed to legend(..) as well
as the what key indicating whether the legend such be placed in the lower panel (l, default),
upper panel (u), or as a figlegend (fig). Notable is the loc-key that places the legend
inside the object specified by what. Possible values are (cf. legend)

– upper right

– upper left

– lower left

– lower right

– right

– center left

– center right

– lower center

– upper center

– center

• nomule – bool, optional; if set to True, no mule will be printed

Returns
the figure as well as all axis created

114 Chapter 13. pymule reference guide

McMule, Release v0.5.1

Example
An NNLO K factor plot

>>> fig, (ax1, ax2, ax3) = kplot(
... {
... 'lo': lodata['thetae'],
... 'nlo': nlodata['thetae'],
... 'nnlo':nnlodata['thetae'],
... },
... labelx="$\theta_e\,/\,{\rm mrad}$",
... labelsigma="$\D\sigma/\D\theta_e\ /\ {\rm\upmu b}$",
... legend={
... 'lo': '$\sigma^{(0)}$',
... 'nlo': '$\sigma^{(1)}$',
... 'nnlo': '$\sigma^{(2)}$'
... },
... legendopts={'what': 'u', 'loc': 'lower right'}
...)

pymule.plot.setup_pgf()

setupf_pgf() ensures that Matplotlib exports PGF compatible plots.

pymule.plot.threepanel(labelx='', upleft=[], labupleft='', colupleft=['C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7',
'C8', 'C9'], middleleft=[], labmiddleleft='', colmiddleleft=['C0', 'C1', 'C2', 'C3', 'C4',
'C5', 'C6', 'C7', 'C8', 'C9'], downleft=[], labdownleft='', coldownleft=['C0', 'C1', 'C2',
'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'])

creates three panel plot, accommodating at most three axes (upper, middle, lower). The x axis is naturally shared.

Parameters

• labelx – str, optional; label for the x axis

• upleft – Nx3 numpy matrix or list thereof, optional; data plotted in the upper-left axes

• colupleft – colour for upper-left data, defaults to colour scheme defined in colours

• labupleft – str, optional; the label for the upper-left data

• midleft – Nx3 numpy matrix or list thereof, optional; data plotted in the middle-left axes

• colmidleft – colour for middle-left data, defaults to colour scheme defined in colours

• labmidleft – str, optional; the label for the middle-left data

• downleft – Nx3 numpy matrix or list thereof, optional; data plotted in the lower-left axes

• coldownleft – colour for lower-left data, defaults to colour scheme defined in colours

• labdownleft – str, optional; the label for the lower-left data

Returns
the figure and a list of all axes created

pymule.plot.twopanel(labelx='', upleft=[], labupleft='', colupleft=['C0', 'C1', 'C2', 'C3', 'C4', 'C5', 'C6', 'C7',
'C8', 'C9'], downleft=[], labdownleft='', coldownleft=['C0', 'C1', 'C2', 'C3', 'C4', 'C5',
'C6', 'C7', 'C8', 'C9'], upright=[], labupright='', colupright=['C0', 'C1', 'C2', 'C3', 'C4',
'C5', 'C6', 'C7', 'C8', 'C9'], downright=[], labdownright='', coldownright=['C0', 'C1',
'C2', 'C3', 'C4', 'C5', 'C6', 'C7', 'C8', 'C9'], upalign=[], downalign=[])

creates two panel plot, accommodating at most four axes (upper left, upper right, lower left, and lower right).
The x axis is naturally shared.

13.6. Working with plots 115

McMule, Release v0.5.1

Parameters

• labelx – str, optional; label for the x axis

• upleft – Nx3 numpy matrix or list thereof, optional; data plotted in the upper-left axes

• colupleft – colour for upper-left data, defaults to colour scheme defined in colours

• labupleft – str, optional; the label for the upper-left data

• upright – Nx3 numpy matrix or list thereof, optional; data plotted in the upper-right axes

• colupright – colour for upper-right data, defaults to colour scheme defined in colours

• labupright – str, optional; the label for the upper-right data

• downleft – Nx3 numpy matrix or list thereof, optional; data plotted in the lower-left axes

• coldownleft – colour for lower-left data, defaults to colour scheme defined in colours

• labdownleft – str, optional; the label for the lower-left data

• downright – Nx3 numpy matrix or list thereof, optional; data plotted in the lower-right axes

• coldownright – colour for lower-right data, defaults to colour scheme defined in colours

• labdownright – str, optional; the label for the lower-right data

• upalign – list of two values, optional; align the first and second values of the left and right
y axes in the upper panel

• downalign – list of two values, optional; align the first and second values of the left and
right y axes in the lower panel

Returns
the figure and a list of all axes created

Example
make a comparison plot between dat and dat_ref as a d𝜎/d𝜃𝑒

>>> fig,(ax1,ax2)=twopanel(
... r'$\theta_e\,/\,{\rm mrad}$',
... upleft=[dat, dat_ref],
... downleft=divideplots(dat, dat_ref),
... labupleft=r"$\D\sigma/\D\theta_e\,/\,\upmu{\rm b}$",
... labdownleft=r'$\rm rel. difference$'
...)

pymule.plot.watermark(fig, txt='PRELIMINARY', fontsize=60, rotation=20)
watermarks a figure

Parameters

• fig – the figure to watermark

• txt – str, optional; the watermark text to use

• fontsize – int, optional; the fontsize of the watermark

• rotation – int, optional; the angle of the watermark in deg

Example
Watermark a figure as preliminary

116 Chapter 13. pymule reference guide

McMule, Release v0.5.1

>>> fig = figure()
>>> ...
>>> watermark(fig)

Watermark a figure as incomplete

>>> fig = figure()
>>> ...
>>> watermark(fig, "INCOMPLETE")

pymule.colours.alpha_composite(bg, fg, alpha)
calculates the result of alpha-compositing two colours

Parameters

• bf – colour specifier for the background

• fg – colour specifier for the foreground

• alpha – float; alpha value

Result
the resulting colour

pymule.mule.mulify(fig, delx=0, dely=0, col='lightgray', realpha=True)
adds the McMule logo to a figure

Parameters

• fig – figure to add the logo

• delx – float, optional; shift the logo in x direction

• dely – float, optional; shift the logo in x direction

• col – colour specifier, optional; colour to use for the logo

• realpha – bool, optional; whether to re-run the alpha channel

pymule.mpl_axes_aligner.yaxes(ax1, ax2, y1=1, y2=None)
yaxes(ax1, ax2, y=1) changes the limits of ax1 and ax2 to align the values of y on both axis.

yaxes(ax1, y1, ax2, y2) changes the limits of the axis ax1 and ax2 such that the value for y1 on ax1 is aligned to
the value of y2 on ax2.

13.7 Useful other functions

pymule.compress.uncompress(b)
uncompress(“string”) recovers an expression from a compressed string representation generated by Mathemat-
ica’s Compress. Only lists, numbers, and strings are supported. Lists can be nested.

pymule.maths.Li2(x)
Li2(x) returns PolyLog[2, x] for x as a number, a list, or an np.ndarray.

pymule.maths.Li3(x)
Li3(x) returns PolyLog[3, x] for x as a number, a list, or an np.ndarray.

13.7. Useful other functions 117

McMule, Release v0.5.1

(Monte carlo for Muons and other leptons) is a generic framework for higher-order QED calculations of scattering and
decay processes involving leptons. It is written in Fortran 95 with two types of users in mind. First, several processes
are implemented, some at NLO, some at NNLO. For these processes, the user can define an arbitrary (infrared safe),
fully differential observable and compute cross sections and distributions. McMule’s processes, present and, future, are
listed in Table 13.1 together with the relevant experiments for which the cuts are implemented. Second, the program is
set up s.t. additional processes can be implemented by supplying the relevant matrix elements.

Table 13.1: Processes implemented in McMule

process order experiments comments
𝜇 → 𝜈𝜈𝑒 NNLO MEG I&II polarised, massified & exact
𝜇 → 𝜈𝜈𝑒𝛾 NLO MEG I polarised
𝜇 → 𝜈𝜈𝑒𝑒𝑒 NLO Mu3e polarised
𝜇 → 𝜈𝜈𝑒𝛾𝛾 LO MEG polarised
𝜏 → 𝜈𝜈𝑒𝛾 NLO BaBar cuts in lab frame
𝜏 → 𝜈𝜈𝑙ℓℓ NLO Belle II

NLO MUonE

NNLO purely electronic corrections

mixed (massified)

ℓ𝑝 → ℓ𝑝 NNLO P2, MUSE, Prad only leptonic corrections
𝑒−𝑒− → 𝑒−𝑒− NNLO Prad complete
𝑒+𝑒− → 𝑒+𝑒− NNLO no 𝑛𝑓

𝑒+𝑒− → 𝛾𝛾 NNLO PADME
𝑒+𝑒− → 𝜇+𝜇− NNLO Belle massified

The public version of the code can be found at

https://gitlab.com/mule-tools/mcmule

To obtain a copy of the code, git is recommended

$ git clone --recursive https://gitlab.com/mule-tools/mcmule

Alternatively, we provide a Docker container for easy deployment and legacy results (cf. Section Basics of containeri-
sation). In multi-user environments, udocker can be used instead. In either case, a pre-compiled copy of the code can
be obtained by calling

$ docker pull yulrich/mcmule # requires Docker to be installed
$ udocker pull yulrich/mcmule # requires udocker to be installed

We provide instructions on how is used in Section Getting started.

118 Chapter 13. pymule reference guide

https://gitlab.com/mule-tools/mcmule

Chapter 14

Indices and tables

• genindex

• modindex

• search

119

McMule, Release v0.5.1

120 Chapter 14. Indices and tables

Bibliography

[1] Federico Buccioni, Jean-Nicolas Lang, Jonas M. Lindert, Philipp Maierhöfer, Stefano Pozzorini, Hantian Zhang,
and Max F. Zoller. OpenLoops 2. Eur. Phys. J. C, 79(10):866, 2019. arXiv:1907.13071, doi:10.1140/epjc/s10052-
019-7306-2.

[2] Federico Buccioni, Stefano Pozzorini, and Max Zoller. On-the-fly reduction of open loops. Eur. Phys. J. C,
78(1):70, 2018. arXiv:1710.11452, doi:10.1140/epjc/s10052-018-5562-1.

[3] A. Denner and S. Dittmaier. Scalar one-loop 4-point integrals. Nucl. Phys., B844:199–242, 2011.
arXiv:1005.2076, doi:10.1016/j.nuclphysb.2010.11.002.

[4] Ansgar Denner and S. Dittmaier. Reduction of one loop tensor five point integrals. Nucl. Phys., B658:175–202,
2003. arXiv:hep-ph/0212259, doi:10.1016/S0550-3213(03)00184-6.

[5] Ansgar Denner and S. Dittmaier. Reduction schemes for one-loop tensor integrals. Nucl. Phys., B734:62–115,
2006. arXiv:hep-ph/0509141, doi:10.1016/j.nuclphysb.2005.11.007.

[6] Ansgar Denner, Stefan Dittmaier, and Lars Hofer. Collier: a fortran-based Complex One-Loop LI-
brary in Extended Regularizations. Comput. Phys. Commun., 212:220–238, 2017. arXiv:1604.06792,
doi:10.1016/j.cpc.2016.10.013.

[7] T. Engel, C. Gnendiger, A. Signer, and Y. Ulrich. Small-mass effects in heavy-to-light form factors. JHEP, 02:118,
2018. arXiv:1811.06461, doi:10.1007/JHEP02(2019)118.

[8] T. Engel, A. Signer, and Y. Ulrich. A subtraction scheme for massive QED. JHEP, 01:085, 2020.
arXiv:1909.10244, doi:10.1007/JHEP01(2020)085.

[9] Tim Engel, Adrian Signer, and Yannick Ulrich. Universal structure of radiative QED amplitudes at one loop.
JHEP, 04:097, 2022. arXiv:2112.07570, doi:10.1007/JHEP04(2022)097.

[10] M. Fael, L. Mercolli, and M. Passera. Radiative µ and 𝜏 leptonic decays at NLO. JHEP, 07:153, 2015.
arXiv:1506.03416, doi:10.1007/JHEP07(2015)153.

[11] Eleftherios Gkioulekas. Using restrictions to accept or reject solutions of radical equations. Int. J. of Mathematical
Education in Science and Technology, 49(8):1278–1292, 2018. doi:10.1080/0020739X.2018.1458341.

[12] Jorge Gomes, Emanuele Bagnaschi, Isabel Campos, Mario David, Luís Alves, João Martins, João Pina, Alvaro
López-García, and Pablo Orviz. Enabling rootless Linux Containers in multi-user environments: the $udocker$
tool. Comput. Phys. Commun., 232:84–97, 2018. arXiv:1711.01758, doi:10.1016/j.cpc.2018.05.021.

[13] John D. Hunter. Matplotlib: a 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007.
doi:10.1109/MCSE.2007.55.

[14] J. P. Lees and others. Measurement of the branching fractions of the radiative leptonic 𝜏 decays $\tau \to
e\gamma \nu \bar \nu $ and $\tau \to \mu \gamma \nu \bar \nu $ at \textsc BaBar. Phys. Rev., D91:051103, 2015.
arXiv:1502.01784, doi:10.1103/PhysRevD.91.051103.

[15] G. Peter Lepage. VEGAS: an adaptive multidimensional integration program. Technical Report, "LNS Cornell",
Mar 1980.

121

https://arxiv.org/abs/1907.13071
https://doi.org/10.1140/epjc/s10052-019-7306-2
https://doi.org/10.1140/epjc/s10052-019-7306-2
https://arxiv.org/abs/1710.11452
https://doi.org/10.1140/epjc/s10052-018-5562-1
https://arxiv.org/abs/1005.2076
https://doi.org/10.1016/j.nuclphysb.2010.11.002
https://arxiv.org/abs/hep-ph/0212259
https://doi.org/10.1016/S0550-3213(03)00184-6
https://arxiv.org/abs/hep-ph/0509141
https://doi.org/10.1016/j.nuclphysb.2005.11.007
https://arxiv.org/abs/1604.06792
https://doi.org/10.1016/j.cpc.2016.10.013
https://arxiv.org/abs/1811.06461
https://doi.org/10.1007/JHEP02(2019)118
https://arxiv.org/abs/1909.10244
https://doi.org/10.1007/JHEP01(2020)085
https://arxiv.org/abs/2112.07570
https://doi.org/10.1007/JHEP04(2022)097
https://arxiv.org/abs/1506.03416
https://doi.org/10.1007/JHEP07(2015)153
https://doi.org/10.1080/0020739X.2018.1458341
https://arxiv.org/abs/1711.01758
https://doi.org/10.1016/j.cpc.2018.05.021
https://doi.org/10.1109/MCSE.2007.55
https://arxiv.org/abs/1502.01784
https://doi.org/10.1103/PhysRevD.91.051103

McMule, Release v0.5.1

[16] George Marsaglia. Random numbers fall mainly in the planes. Proceedings of the Na-
tional Academy of Sciences, 61(1):25–28, 1968. URL: https://www.pnas.org/content/61/1/25,
arXiv:https://www.pnas.org/content/61/1/25.full.pdf, doi:10.1073/pnas.61.1.25.

[17] Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment. Linux J., March
2014.

[18] B. Oberhof. Measurement of $\mathcal B(\tau \to l\gamma \nu \bar \nu ,l=e,\mu)$ at BaBar. PhD thesis, Uni-
versity of Pisa, Italy, 2015.

[19] S. K. Park and K. W. Miller. Random Number Generators: Good Ones Are Hard to Find. Commun. ACM,
31(10):1192–1201, October 1988. URL: http://doi.acm.org/10.1145/63039.63042, doi:10.1145/63039.63042.

[20] Hiren H. Patel. Package-X: A Mathematica package for the analytic calculation of one-loop integrals. Comput.
Phys. Commun., 197:276–290, 2015. arXiv:1503.01469, doi:10.1016/j.cpc.2015.08.017.

[21] G. M. Pruna, A. Signer, and Y. Ulrich. Fully differential NLO predictions for the radiative decay of muons and
taus. Phys. Lett., B772:452–458, 2017. arXiv:1705.03782, doi:10.1016/j.physletb.2017.07.008.

[22] Fernando Pérez and Brian E. Granger. IPython: A System for Interactive Scientific Computing. Computing in
Science & Engineering, 9(3):21–29, 2007. doi:10.1109/MCSE.2007.53.

[23] Y. Ulrich. "$\mathrm FKS^2$: extending the FKS scheme to double soft correction". Technical Report, "Paul
Scherrer Institute", "2019".

[24] Y. Ulrich. Fully differential NLO predictions for rare and radiative lepton decays. PoS, NuFact2017:124, 2018.
arXiv:1712.05633, doi:10.22323/1.295.0124.

[25] Yannick Ulrich. \sc McMule: QED Corrections for Low-Energy Experiments. PhD thesis, University of Zurich,
2020. arXiv:2008.09383.

[26] Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The numpy array: a structure for efficient numerical
computation. Computing in Science & Engineering, 13(2):22–30, 2011. doi:10.1109/MCSE.2011.37.

[27] Andy B. Yoo, Morris A. Jette, and Mark Grondona. "slurm: simple linux utility for resource management". In "Job
Scheduling Strategies for Parallel Processing", 44–60. Berlin, Heidelberg, "2003". Springer Berlin Heidelberg.

[28] Rikkert Frederix, Stefano Frixione, Fabio Maltoni, and Tim Stelzer. Automation of next-to-leading order compu-
tations in QCD: the FKS subtraction. Journal of High Energy Physics, Oct 2009. arXiv:0908.4272v2.

[29] S. Frixione, Z. Kunszt, and A. Signer. Three-jet cross sections to next-to-leading order. Nuclear Physics B,
467(3):399–442, May 1996. arXiv:hep-ph/9512328v1.

122 Bibliography

https://www.pnas.org/content/61/1/25
https://arxiv.org/abs/https://www.pnas.org/content/61/1/25.full.pdf
https://doi.org/10.1073/pnas.61.1.25
http://doi.acm.org/10.1145/63039.63042
https://doi.org/10.1145/63039.63042
https://arxiv.org/abs/1503.01469
https://doi.org/10.1016/j.cpc.2015.08.017
https://arxiv.org/abs/1705.03782
https://doi.org/10.1016/j.physletb.2017.07.008
https://doi.org/10.1109/MCSE.2007.53
https://arxiv.org/abs/1712.05633
https://doi.org/10.22323/1.295.0124
https://arxiv.org/abs/2008.09383
https://doi.org/10.1109/MCSE.2011.37
https://arxiv.org/abs/0908.4272v2
https://arxiv.org/abs/hep-ph/9512328v1

Python Module Index

p
pymule.colours, 117
pymule.compress, 117
pymule.errortools, 97
pymule.loader, 106
pymule.maths, 117
pymule.mpl_axes_aligner, 117
pymule.mule, 117
pymule.plot, 113
pymule.vegas, 103
pymule.xicut, 111

123

McMule, Release v0.5.1

124 Python Module Index

Index

A
addkeyedsets() (in module pymule.xicut), 111
addplots() (in module pymule.errortools), 97
addsets() (in module pymule.loader), 106
alpha_composite() (in module pymule.colours), 117

B
boost_back() (fortran function), 69
boost_rf() (fortran function), 69
BR, 53

C
callsanitised() (in module pymule.loader), 106
chisq() (in module pymule.errortools), 97
combineNplots() (in module pymule.errortools), 98
combineplots() (in module pymule.errortools), 98
commit_cache() (in module pymule.loader), 106
config file, 54
container, 54
containerisation, 54
corner region, 54
counter-event, 54

D
DiscB() (fortran function), 75
DiscB_cplx() (fortran function), 75
dividenumbers() (in module pymule.errortools), 99
divideplots() (in module pymule.errortools), 99

E
eik() (fortran function), 73
errorband() (in module pymule.plot), 113
euler_mat() (fortran function), 69
event, 54
EW, 53
exportvegas() (in module pymule.vegas), 103

F
filenamesuffix (fortran variable), 70
fix_mu() (fortran subroutine), 70
FKS, 53
format_label_string_with_exponent() (in module

pymule.plot), 113
FSR, 53

full period, 54

G
generic pieces, 54
generic processes, 55
get_errorbands() (in module pymule.xicut), 111
get_val() (in module pymule.xicut), 112
getplots() (in module pymule.vegas), 103
guess_version() (in module pymule.vegas), 103

H
hash_file() (in module pymule.loader), 106
HVP, 53

I
ieik() (fortran function), 73
importreg() (in module pymule.loader), 106
importvegas() (in module pymule.vegas), 104
init_flavour() (fortran subroutine), 66
inituser() (fortran subroutine), 70
integratehistogram() (in module pymule.errortools),

99
IR, 53
ISR, 53

K
kplot() (in module pymule.plot), 114

L
Li2() (in module pymule.maths), 117
Li3() (in module pymule.maths), 117
LO, 53
LP, 53

M
make_mlm() (fortran function), 73
max_val (fortran variable), 70
measurement function, 55
menu file, 55
mergebins() (in module pymule.errortools), 100
mergefks() (in module pymule.loader), 107
mergefkswithplot() (in module pymule.xicut), 112
mergenumbers() (in module pymule.errortools), 100
mergeplots() (in module pymule.errortools), 101

125

McMule, Release v0.5.1

mergeseeds() (in module pymule.loader), 108
mergeset() (in module pymule.loader), 108
min_val (fortran variable), 70
mlm (fortran type), 72
module

pymule.colours, 117
pymule.compress, 117
pymule.errortools, 97
pymule.loader, 106
pymule.maths, 117
pymule.mpl_axes_aligner, 117
pymule.mule, 117
pymule.plot, 113
pymule.vegas, 103
pymule.xicut, 111

mulify() (in module pymule.mule), 117
multiintersect() (in module pymule.loader), 108
myfit() (in module pymule.xicut), 112

N
names (fortran variable), 70
NLO, 53
NLP, 53
NNLO, 53
nr_bins (fortran variable), 70
nr_q (fortran variable), 70
NTS, 53
ntssoft() (fortran function), 74

O
OS, 54

P
part() (fortran function), 73
particle (fortran type), 72
particles (fortran type), 72
partInterface() (fortran function), 74
parts() (fortran function), 73
pass_cut (fortran variable), 70
pattern() (in module pymule.loader), 109
PCS, 54
PID, 54
plusnumbers() (in module pymule.errortools), 101
printnumber() (in module pymule.errortools), 101
process group, 55
PSD3() (fortran subroutine), 75
PSD4() (fortran subroutine), 75
PSD4_FKS() (fortran subroutine), 75
PSD5() (fortran subroutine), 76
PSD5_25() (fortran subroutine), 76
PSD5_FKS() (fortran subroutine), 76
PSD6() (fortran subroutine), 76
PSD6_23_24_34() (fortran subroutine), 76
PSD6_23_24_34_E56() (fortran subroutine), 77

PSD6_25_26_m50_FKS() (fortran subroutine), 78
PSD6_26_2x5() (fortran subroutine), 80
PSD6_FKS() (fortran subroutine), 77
PSD6_FKSS() (fortran subroutine), 78
PSD6_P_25_26_m50_FKS() (fortran subroutine), 80
PSD7() (fortran subroutine), 78
PSD7_27_37_47_2x5_FKS() (fortran subroutine), 80
PSD7_27_37_47_E56_FKS() (fortran subroutine), 78
PSD7_27_37_47_FKS() (fortran subroutine), 78
PSX2() (fortran subroutine), 79
PSX3_35_FKS() (fortran subroutine), 79
PSX3_coP13_35_FKS() (fortran subroutine), 81
PSX3_coP_35_FKS() (fortran subroutine), 82
PSX3_coP_45_FKS() (fortran subroutine), 82
PSX3_FKS() (fortran subroutine), 79
PSX3_P13_35_FKS() (fortran subroutine), 81
PSX3_P_15_25_FKS() (fortran subroutine), 81
PSX3_P_15_FKS() (fortran subroutine), 81
PSX3_P_35_FKS() (fortran subroutine), 81
PSX3_P_45_FKS() (fortran subroutine), 82
PSX4() (fortran subroutine), 79
PSX4_35_36_FKSS() (fortran subroutine), 80
PSX4_coP13_35_36_FKSS() (fortran subroutine), 83
PSX4_coP_35_36_FKSS() (fortran subroutine), 83
PSX4_coP_45_46_FKSS() (fortran subroutine), 84
PSX4_FKSS() (fortran subroutine), 79
PSX4_P13_35_36_FKSS() (fortran subroutine), 83
PSX4_P_15_16_25_26_FKSS() (fortran subroutine), 83
PSX4_P_15_16_FKSS() (fortran subroutine), 82
PSX4_P_35_36_FKSS() (fortran subroutine), 82
PSX4_P_45_46_FKSS() (fortran subroutine), 83
pymule.colours

module, 117
pymule.compress

module, 117
pymule.errortools

module, 97
pymule.loader

module, 106
pymule.maths

module, 117
pymule.mpl_axes_aligner

module, 117
pymule.mule

module, 117
pymule.plot

module, 113
pymule.vegas

module, 103
pymule.xicut

module, 111

Q
quant() (fortran function), 71

126 Index

McMule, Release v0.5.1

R
random seed, 55
read_record() (in module pymule.vegas), 105
real (fortran type), 65
real (fortran variable), 65
real() (fortran function), 65–68
RNG, 54

S
ScalarC0() (fortran function), 75
ScalarC0_cplx() (fortran function), 75
ScalarC0IR6() (fortran function), 75
ScalarC0IR6_cplx() (fortran function), 75
ScalarD0IR16() (fortran function), 75
ScalarD0IR16_cplx() (fortran function), 75
scaleplot() (in module pymule.errortools), 102
scaleset() (in module pymule.loader), 109
scalesets() (in module pymule.loader), 109
setup() (in module pymule.loader), 110
setup_pgf() (in module pymule.plot), 115
SHA1, 54
sigma() (in module pymule.loader), 110
SM, 54
soft cut, 55
submission script, 55

T
threepanel() (in module pymule.plot), 115
timesnumbers() (in module pymule.errortools), 102
twopanel() (in module pymule.plot), 115

U
uncompress() (in module pymule.compress), 117
userdim (fortran variable), 70
userevent() (fortran subroutine), 71
userweight (fortran variable), 70

V
VP, 54

W
watermark() (in module pymule.plot), 116
write_record() (in module pymule.vegas), 105

X
xiresidue() (in module pymule.xicut), 113

Y
yaxes() (in module pymule.mpl_axes_aligner), 117

Index 127

	Getting started
	Obtaining the code
	Simple runs at LO
	Setting McMule up
	Running McMule manually
	Analysing the output

	Running at NLO and beyond
	Setting McMule up
	Running McMule
	Analysing the results

	More complicated runs
	Asking for user input
	Generation of the tau momentum
	Boosting into the lab frame
	Running and analysis

	Structure of McMule
	Modular structure of the code
	What happens when running

	General aspects of using McMule
	Statistics
	Analysis
	Manual compilation
	Running in a container

	Technical aspects of McMule
	Phase-space generation
	Implementation of FKS schemes
	Calling procedures and function pointers
	Optional parameters for integrands
	c parameters
	Soft and collinear cut parameter

	Random number generation
	Differential distributions and intermediary state files
	Basics of containerisation
	Terminology
	Building images
	Creating containers and running

	Implementing new processes in McMule
	Creating a new process group
	Study of c dependence
	Example calculations in Mathematica
	Coding style and best practice

	The FKS2 scheme
	FKS: extension to NLO

	Glossary
	Acronyms
	Technical terms

	Bibliography
	Particle ID
	Available processes and which_piece
	Fortran reference guide
	User-modifiable parameters
	Technical parameters
	User-facing functions
	Scalar quantities
	Transformations

	The user file
	Mandatory functions
	Tweaking parameters

	Technical routines
	The particle framework
	Matrix element interface
	Package-X function
	VP functions
	Phase spaces

	pymule user guide
	Working with files
	Working with errors
	Plotting

	pymule reference guide
	Working with errors
	Working with abstract records
	Working with vegas records
	Working with records of data
	Working with c data
	Working with plots
	Useful other functions

	Indices and tables
	Bibliography
	Python Module Index
	Index

