Bibliography

[1]

Federico Buccioni, Jean-Nicolas Lang, Jonas M. Lindert, Philipp Maierhöfer, Stefano Pozzorini, Hantian Zhang, and Max F. Zoller. OpenLoops 2. Eur. Phys. J. C, 79(10):866, 2019. arXiv:1907.13071, doi:10.1140/epjc/s10052-019-7306-2.

[2]

Federico Buccioni, Stefano Pozzorini, and Max Zoller. On-the-fly reduction of open loops. Eur. Phys. J. C, 78(1):70, 2018. arXiv:1710.11452, doi:10.1140/epjc/s10052-018-5562-1.

[3]

A. Denner and S. Dittmaier. Scalar one-loop 4-point integrals. Nucl. Phys., B844:199–242, 2011. arXiv:1005.2076, doi:10.1016/j.nuclphysb.2010.11.002.

[4]

Ansgar Denner and S. Dittmaier. Reduction of one loop tensor five point integrals. Nucl. Phys., B658:175–202, 2003. arXiv:hep-ph/0212259, doi:10.1016/S0550-3213(03)00184-6.

[5]

Ansgar Denner and S. Dittmaier. Reduction schemes for one-loop tensor integrals. Nucl. Phys., B734:62–115, 2006. arXiv:hep-ph/0509141, doi:10.1016/j.nuclphysb.2005.11.007.

[6]

Ansgar Denner, Stefan Dittmaier, and Lars Hofer. Collier: a fortran-based Complex One-Loop LIbrary in Extended Regularizations. Comput. Phys. Commun., 212:220–238, 2017. arXiv:1604.06792, doi:10.1016/j.cpc.2016.10.013.

[7]

T. Engel, C. Gnendiger, A. Signer, and Y. Ulrich. Small-mass effects in heavy-to-light form factors. JHEP, 02:118, 2018. arXiv:1811.06461, doi:10.1007/JHEP02(2019)118.

[8]

T. Engel, A. Signer, and Y. Ulrich. A subtraction scheme for massive QED. JHEP, 01:085, 2020. arXiv:1909.10244, doi:10.1007/JHEP01(2020)085.

[9]

Tim Engel, Adrian Signer, and Yannick Ulrich. Universal structure of radiative QED amplitudes at one loop. JHEP, 04:097, 2022. arXiv:2112.07570, doi:10.1007/JHEP04(2022)097.

[10]

M. Fael, L. Mercolli, and M. Passera. Radiative µ and τ leptonic decays at NLO. JHEP, 07:153, 2015. arXiv:1506.03416, doi:10.1007/JHEP07(2015)153.

[11]

Eleftherios Gkioulekas. Using restrictions to accept or reject solutions of radical equations. Int. J. of Mathematical Education in Science and Technology, 49(8):1278–1292, 2018. doi:10.1080/0020739X.2018.1458341.

[12]

Jorge Gomes, Emanuele Bagnaschi, Isabel Campos, Mario David, Luís Alves, João Martins, João Pina, Alvaro López-García, and Pablo Orviz. Enabling rootless Linux Containers in multi-user environments: the $udocker$ tool. Comput. Phys. Commun., 232:84–97, 2018. arXiv:1711.01758, doi:10.1016/j.cpc.2018.05.021.

[13]

John D. Hunter. Matplotlib: a 2d graphics environment. Computing in Science & Engineering, 9(3):90–95, 2007. doi:10.1109/MCSE.2007.55.

[14]

J. P. Lees and others. Measurement of the branching fractions of the radiative leptonic τ decays $\tau \to e\gamma \nu \bar \nu $ and $\tau \to \mu \gamma \nu \bar \nu $ at \textsc BaBar. Phys. Rev., D91:051103, 2015. arXiv:1502.01784, doi:10.1103/PhysRevD.91.051103.

[15]

G. Peter Lepage. VEGAS: an adaptive multidimensional integration program. Technical Report, "LNS Cornell", Mar 1980.

[16]

George Marsaglia. Random numbers fall mainly in the planes. Proceedings of the National Academy of Sciences, 61(1):25–28, 1968. URL: https://www.pnas.org/content/61/1/25, arXiv:https://www.pnas.org/content/61/1/25.full.pdf, doi:10.1073/pnas.61.1.25.

[17]

Dirk Merkel. Docker: lightweight linux containers for consistent development and deployment. Linux J., March 2014.

[18]

B. Oberhof. Measurement of $\mathcal B(\tau \to l\gamma \nu \bar \nu ,l=e,\mu )$ at BaBar. PhD thesis, University of Pisa, Italy, 2015.

[19]

S. K. Park and K. W. Miller. Random Number Generators: Good Ones Are Hard to Find. Commun. ACM, 31(10):1192–1201, October 1988. URL: http://doi.acm.org/10.1145/63039.63042, doi:10.1145/63039.63042.

[20]

Hiren H. Patel. Package-X: A Mathematica package for the analytic calculation of one-loop integrals. Comput. Phys. Commun., 197:276–290, 2015. arXiv:1503.01469, doi:10.1016/j.cpc.2015.08.017.

[21]

G. M. Pruna, A. Signer, and Y. Ulrich. Fully differential NLO predictions for the radiative decay of muons and taus. Phys. Lett., B772:452–458, 2017. arXiv:1705.03782, doi:10.1016/j.physletb.2017.07.008.

[22]

Fernando Pérez and Brian E. Granger. IPython: A System for Interactive Scientific Computing. Computing in Science & Engineering, 9(3):21–29, 2007. doi:10.1109/MCSE.2007.53.

[23]

Y. Ulrich. "$\mathrm FKS^2$: extending the FKS scheme to double soft correction". Technical Report, "Paul Scherrer Institute", "2019".

[24]

Y. Ulrich. Fully differential NLO predictions for rare and radiative lepton decays. PoS, NuFact2017:124, 2018. arXiv:1712.05633, doi:10.22323/1.295.0124.

[25]

Yannick Ulrich. \sc McMule: QED Corrections for Low-Energy Experiments. PhD thesis, University of Zurich, 2020. arXiv:2008.09383.

[26]

Stéfan van der Walt, S. Chris Colbert, and Gaël Varoquaux. The numpy array: a structure for efficient numerical computation. Computing in Science & Engineering, 13(2):22–30, 2011. doi:10.1109/MCSE.2011.37.

[27]

Andy B. Yoo, Morris A. Jette, and Mark Grondona. "slurm: simple linux utility for resource management". In "Job Scheduling Strategies for Parallel Processing", 44–60. Berlin, Heidelberg, "2003". Springer Berlin Heidelberg.

[28]

Rikkert Frederix, Stefano Frixione, Fabio Maltoni, and Tim Stelzer. Automation of next-to-leading order computations in QCD: the FKS subtraction. Journal of High Energy Physics, Oct 2009. arXiv:0908.4272v2.

[29]

S. Frixione, Z. Kunszt, and A. Signer. Three-jet cross sections to next-to-leading order. Nuclear Physics B, 467(3):399–442, May 1996. arXiv:hep-ph/9512328v1.